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Solving Recurrences

T(n) ≤ cn + T(n/5) + T(3n/4)

→ T(n)  O(n)
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Merge-Sort Review

Merge-sort on an input 
sequence S with n
elements consists of 
three steps:
◼ Divide: partition S into 

two sequences S1 and S2

of about n/2 elements 
each

◼ Recur: recursively sort S1

and S2

◼ Conquer: merge S1 and 
S2 into a unique sorted 
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2)  partition(S, n/2) 

mergeSort(S1, C)

mergeSort(S2, C)

S  merge(S1, S2)
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Recurrence Equation Analysis
The conquer step of merge-sort consists of merging two sorted 
sequences, each with n/2 elements and implemented by means of 
a doubly linked list, takes at most bn steps, for some constant b.

Likewise, the basis case (n < 2) will take at b most steps.

Therefore, if we let T(n) denote the running time of merge-sort:

We can therefore analyze the running time of merge-sort by 
finding a closed form solution to the above equation.
◼ That is, a solution that has T(n) only on the left-hand side.
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Iterative Substitution
In the iterative substitution, or “plug-and-chug,” technique, we 
iteratively apply the recurrence equation to itself and see if we can 
find a pattern:

Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n. 

So,

Thus, T(n) is O(n log n).
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The Recursion Tree
Draw the recursion tree for the recurrence relation and look for a 
pattern: 

depth T’s size

0 1 n

1 2 n/2

i 2i n/2i

… … …
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Total time = bn + bn log n

(last level plus all previous levels)
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Guess-and-Test Method
In the guess-and-test method, we guess a closed form solution 
and then try to prove it is true by induction:

Guess: T(n) < cn log n.

Wrong: we cannot make this last line be less than cn log n 
for all n ≥ some constant.
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Guess-and-Test Method, (cont.)

Recall the recurrence equation:

Guess #2: T(n) < cn log2 n.

◼ if c > b.

So, T(n) is O(n log2 n).

In general, to use this method, you need to have a good guess 
and you need to be good at induction proofs.
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Master Method (Section 4.3)
Many divide-and-conquer recurrence equations have 
the form:

The Master Theorem (case 2 different from text)
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Master Method, Example 1
The form:

The Master Theorem:

Example:
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Solution: logba=2, so case 1 says T(n) is O(n2).
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Master Method, Example 2
The form:

The Master Theorem:

Example:
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Solution: logba=1, so case 2 says T(n) is O(n log2 n).
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Master Method, Example 3
The form:

The Master Theorem:

Example:
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Solution: logba=0, so case 3 says T(n) is O(n log n).
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Master Method, Example 4
The form:

The Master Theorem:

Example:
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Solution: logba=3, so case 1 says T(n) is O(n3).
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Master Method, Example 5
The form:

The Master Theorem:

Example:
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Solution: logba=2, so case 3 says T(n) is O(n3).
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Master Method, Example 6
The form:

The Master Theorem:

Example:
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Solution: logba=0, so case 2 says T(n) is O(log n).

(binary search)
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Master Method, Example 7
The form:

The Master Theorem:

Example:
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Solution: logba=1, so case 1 says T(n) is O(n).

(heap construction)
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Iterative “Proof” of the 
Master Theorem

Using iterative substitution, let us see if we can find a pattern:

We then distinguish the three cases as
◼ The first term is dominant

◼ Each term in the summation is the same

◼ The summation is a geometric series with decreasing terms
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Integer Multiplication

Algorithm: Multiply two n-bit integers I and J.
◼ Divide step: Split I and J into high-order and low-order bits

◼ We can then define I*J by multiplying the parts and adding:

◼ So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).

◼ But that is no better than the algorithm we learned in grade 
school.
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An Improved Integer 
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
◼ Divide step: Split I and J into high-order and low-order bits

◼ Observe that there is a different way to multiply parts:

◼ So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2
3), by 

the Master Theorem.

◼ Thus, T(n) is O(n1.585).
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