
Solving Recurrences 1

Solving Recurrences

T(n) ≤ cn + T(n/5) + T(3n/4)

→ T(n)  O(n)

© 2004 Goodrich, Tamassia Solving Recurrences 2

Merge-Sort Review

Merge-sort on an input
sequence S with n
elements consists of
three steps:
◼ Divide: partition S into

two sequences S1 and S2

of about n/2 elements
each

◼ Recur: recursively sort S1

and S2

◼ Conquer: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2)  partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S  merge(S1, S2)

© 2004 Goodrich, Tamassia Solving Recurrences 3

Recurrence Equation Analysis
The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly linked list, takes at most bn steps, for some constant b.

Likewise, the basis case (n < 2) will take at b most steps.

Therefore, if we let T(n) denote the running time of merge-sort:

We can therefore analyze the running time of merge-sort by
finding a closed form solution to the above equation.
◼ That is, a solution that has T(n) only on the left-hand side.





+


=

2if)2/(2

2if
)(

nbnnT

nb
nT

© 2004 Goodrich, Tamassia Solving Recurrences 4

Iterative Substitution
In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can
find a pattern:

Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n.

So,

Thus, T(n) is O(n log n).

ibnnT

bnnT

bnnT

bnnT

bnnbnT

bnnTnT

ii +=

=

+=

+=

+=

++=

+=

)2/(2

...

4)2/(2

3)2/(2

2)2/(2

))2/())2/(2(2

)2/(2)(

44

33

22

2

nbnbnnT log)(+=

© 2004 Goodrich, Tamassia Solving Recurrences 5

The Recursion Tree
Draw the recursion tree for the recurrence relation and look for a
pattern:

depth T’s size

0 1 n

1 2 n/2

i 2i n/2i

… … …





+


=

2if)2/(2

2if
)(

nbnnT

nb
nT

time

bn

bn

bn

…

Total time = bn + bn log n

(last level plus all previous levels)

© 2004 Goodrich, Tamassia Solving Recurrences 6

Guess-and-Test Method
In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

Guess: T(n) < cn log n.

Wrong: we cannot make this last line be less than cn log n
for all n ≥ some constant.

nbncnncn

nbnncn

nbnnnc

nbnnTnT

loglog

log)2log(log

log))2/log()2/((2

log)2/(2)(

+−=

+−=

+=

+=





+


=

2iflog)2/(2

2if
)(

nnbnnT

nb
nT

© 2004 Goodrich, Tamassia Solving Recurrences 7

Guess-and-Test Method, (cont.)

Recall the recurrence equation:

Guess #2: T(n) < cn log2 n.

◼ if c > b.

So, T(n) is O(n log2 n).

In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

ncn

nbncnncnncn

nbnncn

nbnnnc

nbnnTnT

2

2

2

2

log

loglog2log

log)2log(log

log))2/(log)2/((2

log)2/(2)(



++−=

+−=

+=

+=





+


=

2iflog)2/(2

2if
)(

nnbnnT

nb
nT

© 2004 Goodrich, Tamassia Solving Recurrences 8

Master Method (Section 4.3)
Many divide-and-conquer recurrence equations have
the form:

The Master Theorem (case 2 different from text)





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

© 2004 Goodrich, Tamassia Solving Recurrences 9

Master Method, Example 1
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT +=)2/(4)(

Solution: logba=2, so case 1 says T(n) is O(n2).

© 2004 Goodrich, Tamassia Solving Recurrences 10

Master Method, Example 2
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)2/(2)(+=

Solution: logba=1, so case 2 says T(n) is O(n log2 n).

© 2004 Goodrich, Tamassia Solving Recurrences 11

Master Method, Example 3
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)3/()(+=

Solution: logba=0, so case 3 says T(n) is O(n log n).

© 2004 Goodrich, Tamassia Solving Recurrences 12

Master Method, Example 4
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

2)2/(8)(nnTnT +=

Solution: logba=3, so case 1 says T(n) is O(n3).

© 2004 Goodrich, Tamassia Solving Recurrences 13

Master Method, Example 5
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

3)3/(9)(nnTnT +=

Solution: logba=2, so case 3 says T(n) is O(n3).

© 2004 Goodrich, Tamassia Solving Recurrences 14

Master Method, Example 6
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

1)2/()(+= nTnT

Solution: logba=0, so case 2 says T(n) is O(log n).

(binary search)

© 2004 Goodrich, Tamassia Solving Recurrences 15

Master Method, Example 7
The form:

The Master Theorem:

Example:





+


=

dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog









+

+

−







nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT log)2/(2)(+=

Solution: logba=1, so case 1 says T(n) is O(n).

(heap construction)

© 2004 Goodrich, Tamassia Solving Recurrences 16

Iterative “Proof” of the
Master Theorem

Using iterative substitution, let us see if we can find a pattern:

We then distinguish the three cases as
◼ The first term is dominant

◼ Each term in the summation is the same

◼ The summation is a geometric series with decreasing terms




−

=

−

=

+=

+=

=

+++=

++=

++=

+=

1)(log

0

log

1)(log

0

log

2233

22

2

)/()1(

)/()1(

. . .

)()/()/()/(

)()/()/(

))/())/((

)()/()(

n

i

iia

n

i

iin

b

b

b

b

bnfaTn

bnfaTa

nfbnafbnfabnTa

nfbnafbnTa

bnbnfbnaTa

nfbnaTnT

© 2004 Goodrich, Tamassia Solving Recurrences 17

Integer Multiplication

Algorithm: Multiply two n-bit integers I and J.
◼ Divide step: Split I and J into high-order and low-order bits

◼ We can then define I*J by multiplying the parts and adding:

◼ So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).

◼ But that is no better than the algorithm we learned in grade
school.

l

n

h

l

n

h

JJJ

III

+=

+=

2/

2/

2

2

ll

n

hl

n

lh

n

hh

l

n

hl

n

h

JIJIJIJI

JJIIJI

+++=

++=

2/2/

2/2/

222

)2(*)2(*

© 2004 Goodrich, Tamassia Solving Recurrences 18

An Improved Integer
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
◼ Divide step: Split I and J into high-order and low-order bits

◼ Observe that there is a different way to multiply parts:

◼ So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2
3), by

the Master Theorem.

◼ Thus, T(n) is O(n1.585).

l

n

h

l

n

h

JJJ

III

+=

+=

2/

2/

2

2

ll

n

hllh

n

hh

ll

n

llhhhlhhlllh

n

hh

ll

n

llhhhllh

n

hh

JIJIJIJI

JIJIJIJIJIJIJIJI

JIJIJIJJIIJIJI

+++=

++++−−+=

+++−−+=

2/

2/

2/

2)(2

2])[(2

2]))([(2*

