
© 2020 Shermer Single-Source Shortest Paths 1

Single-Source Shortest Paths
II

Chapter 24

© 2020 Shermer Single-Source Shortest Paths II 2

Lecture Overview
• Dijkstra's Algorithm

• Linear Programming Introduction

• Difference Constraint Systems

• A Triangle Inequality for Shortest Paths

© 2020 Shermer Single-Source Shortest Paths II 3

Dijkstra's Algorithm
Dijkstra's algorithm is an algorithm for SSSP in graphs with
positive edge weights only. It maintains a set S of vertices
whose shortest-path weights from s have been determined.

DIJKSTRA(G, s)

1. INITIALIZE-SINGLE-SOURCE(G, s)
2. S = Ø
3. Q = G.vertices // key is vertex.d
4. while !Q.IS-EMPTY()
5. u = Q.EXTRACT-MIN()
6. S = S + u
7. for each vertex v in Adj[u]
8. RELAX(u, v) // and if v.d changes,

// Q.DECREASE-KEY(v)

© 2020 Shermer Single-Source Shortest Paths II 4

Dijkstra's Algorithm Example

© 2020 Shermer Single-Source Shortest Paths II 5

Dijkstra's Algorithm Analysis
DIJKSTRA(G, s)

1. INITIALIZE-SINGLE-SOURCE(G, s) O(V)
2. S = Ø O(1)
3. Q = G.vertices O(V) heapify
4. while !Q.IS-EMPTY() O(V) iterations
5. u = Q.EXTRACT-MIN() O(log V) O(V log V)
6. S = S + u O(1)
7. for each vertex v in Adj[u] O(E) total iterations
8. RELAX(u, v) O(1)
9. if(v.d decreased) O(1) O(E log V)
10. Q.DECREASE-KEY(v) O(log V)

O((E+V) log V)

using Fibonacci Heap to have a better amortized
DECREASE-KEY O(E + V log V)

O(1)
amort.

O(E)

© 2020 Shermer Single-Source Shortest Paths II 6

Dijkstra's Algorithm
Correctness
Dijkstra's algorithm is a greedy algorithm; it always chooses
the lightest edge leading out of S.

Theorem. When Dijkstra's algorithm is run on a weighted,
directed graph G = (V, E) with nonnegative edge weights w
and a source vertex s, it will terminate with u.d = δ(s, u)
for every vertex u in V.

Proof. Use the following invariant:

At the start of each iteration of the while loop of
lines 4-8, v.d = δ(s, v) for all vertices v in S.

© 2020 Shermer Single-Source Shortest Paths II 7

Dijkstra's Algorithm
Correctness

At the start of each iteration of the while loop of
lines 4-8, v.d = δ(s, v) for all vertices v in S.

Initialization. At the start of the first iteration of the
while loop, S is empty, so the invariant holds.

Maintenance. For a contradiction, assume u is the first
vertex for which u.d  δ(s, u) when it is added to S. The
vertex u  s, for s is added in the first iteration at a time
when s.d = 0. There must be a path from s to u else
u.d = ∞ = δ(s, u). Let p be a shortest path from s to u.

Let y be the first vertex of V – S along p, and x its
predecessor.

© 2020 Shermer Single-Source Shortest Paths II 8

Dijkstra's Algorithm
Correctness

The subpath from s to y must be a shortest path by optimal
substructure. Thus, when u is added, y.d = δ(s, y). If y =
u, this contradicts our choice of u. If y  u, then δ(s, u) >
δ(s, y), but then u.d ≥ δ(s, u) > δ(s, y) = y.d, meaning y
would've been added to S first, a contradiction. ■

The path p can be
broken into p1 from s
to x, the edge xy, and
p2 from y to u. (p1

and/or p2 may be
empty).

© 2020 Shermer Single-Source Shortest Paths II 9

Dijkstra's Algorithm
Correctness
Corollary. When Dijkstra's algorithm is run on a weighted,
directed graph G = (V, E) with nonnegative edge weights w
and a source vertex s, it will terminate with the predecessor
subgraph being a shortest paths tree rooted at s.

© 2020 Shermer Single-Source Shortest Paths II 10

Linear Programming with
Difference Constraints
Later in the course we will study the full linear programming
problem, where we wish to optimize a linear function that is
subject to a set of linear constraints.

Here we study a special type of linear program, one where
the constraints are known as difference constraints.

In the general problem, we are given an m  n matrix A, an
m-vector b, and an n-vector c. We wish to find a vector x
of n elements which maximizes the objective function c∙x
subject to the m constraints given by Ax ≤ b.

© 2020 Shermer Single-Source Shortest Paths II 11

Linear Programming
max. max. 2x1 + 3x2 - 5x3

subject to: subject to:

x1 + 2x2 ≤ 29

3x1 – 4x3 ≤ 12

-x1 + x2 + 2x3 ≤ -8

4x1 – x2 + 3x3 ≤ 0

c

x

A
≤

b

x

© 2020 Shermer Single-Source Shortest Paths II 12

Linear Programming
max. max. 2x1 + 3x2 - 5x3

subject to: subject to:

x1 + 2x2 ≤ 29

3x1 – 4x3 ≤ 12

-x1 + x2 + 2x3 ≤ -8

4x1 – x2 + 3x3 ≤ 0

2 3 -5

x1

x2

x3

1 2 0

3 0 -4

-1 1 2

4 -1 3

≤

29

12

-8

0

x1

x2

x3

© 2020 Shermer Single-Source Shortest Paths II 13

Difference Constraints
In a difference constraint, the corresponding row of A has
one entry that is a 1, one that is a -1, and the rest of the
entries 0. A system of difference constraints has all rows of
A being difference constraints.

x1 – x2 ≤ 3

x2 – x4 ≤ 7

x3 – x1 ≤ 5

x1 – x4 ≤ -2

x1

x2

x3

x4

1 -1 0 0

0 1 0 -1

-1 0 1 0

1 0 0 -1

≤

3

7

5

-2

© 2020 Shermer Single-Source Shortest Paths II 14

Difference Constraints
x1 – x2 ≤ 3
x2 – x4 ≤ 7
x3 – x1 ≤ 5
x1 – x4 ≤ -2

Note that (8, 6, 4, 10) – (4, 2, 0, 6) = (4, 4, 4, 4).
This can be generalized.

Lemma. Let x = (x1, x2, ... , xn) be a solution to a system
Ax ≤ b of difference constraints, and let d be any constant.
Then x + d = (x1+d, x2+d, ... , xn+d) is also a solution to
Ax ≤ b.

This system has a solution
x = (x1, x2, x3, x4) = (4, 2, 0, 6)
and another solution
x = (8, 6, 4, 10)

© 2020 Shermer Single-Source Shortest Paths II 15

Difference Constraints
Proof. For any i and j, (xi+d) – (xj+d) = xi – xj. Thus x+d
satisfies any difference constraint that x does. ■

Difference constraints arise in many applications. One of
the most common is when the unknowns xi are times of
certain events. Then a difference constraint of xi – xj ≤ t
means that event i must occur within time t of event j. To
say that event i must occur at least time t after event j, we
use xi – xj ≥ t, or, to keep all constraints as less-than-or-
equal constraints, xj – xi ≤ -t.

© 2020 Shermer Single-Source Shortest Paths II 16

Constraint Graphs
Given a system of difference constraints, we can make a digraph
for it by making a vertex for each unknown (xi) and an edge for
each constraint. For technical reasons, we have an additional
vertex x0 with an edge from x0 to every other vertex.

The Constraint Graph G = (V, E) of a difference system
Ax ≤ b with n unknowns and m constraints is:

V = {v0, v1, ... vn}
E = {(vi, vj) | xj – xi ≤ bk is a constraint} 

{(v0, v1), (v0, v2), ... (v0, vn)}

w(vi, vj) = bk when xj – xi ≤ bk is a constraint
w(v0, vi) = 0 otherwise

© 2020 Shermer Single-Source Shortest Paths II 17

Constraint Graphs
x1 – x2 ≤ 3
x2 – x4 ≤ 7
x3 – x1 ≤ 5
x1 – x4 ≤ -2

We can find a solution to the system of difference constraints by
finding shortest-path weights in the constraint graph:

Theorem: Given a system Ax ≤ b of difference constraints, let
G = (V, E) be the corresponding constraint graph. If G contains no
negative-weight cycles, then x = (δ(v0, v1), δ(v0, v2), ..., δ(v0, vn)) is a
feasible solution for the system. If G contains a negative-weight cycle,
there is no feasible solution for the system.

0

5

x1

7

0
-2

x2

x0

x3

x4

3

0

0

© 2020 Shermer Single-Source Shortest Paths II 18

Constraint Graphs
Proof. Suppose G has a negative-weight cycle, and without loss
of generality assume the constraints in the cycle are

x1 – x2 ≤ b1,
x2 – x3 ≤ b2,
...
xk-1 – xk ≤ bk-1, and
xk – x1 ≤ bk

x1

b2

bk

x2

xk

x3

b1

0 ≤ σ𝑖=1
𝑘 𝑏𝑖 < 0

The constraints are contradictory. There is no solution.

© 2020 Shermer Single-Source Shortest Paths II 19

Constraint Graphs
Proof. Now suppose G has no negative-weight cycles. Consider
any edge (vi, vj) in E. By the triangle inequality,

δ(v0, vj) ≤ δ(v0, vi) + w(vi, vj) or
δ(v0, vj) – δ(v0, vi) ≤ w(vi, vj)

xj – xi ≤ bk

Or, the constraint k corresponding to that edge is satisfied.
■

© 2020 Shermer Single-Source Shortest Paths II 20

Constraint Graphs
The previous theorem tells us that Bellman-Ford can be
used to solve systems of difference constraints. Such a
system with n unknowns and m constraints gives us a
graph with n+1 vertices and n + m edges. Thus Bellman-
Ford runs in time O((n+1)(n+m)) = O(n2 + nm).

This running time can be improved to O(nm) by noting that
the edges from v0 need to be relaxed only in the first round
of Bellman-Ford, as no edges go to v0.

© 2020 Shermer Single-Source Shortest Paths II 21

Triangle Inequality
Lemma. Let G = (V, E) be a weighted digraph with
weights w and source vertex s. Then, for all edges (u, v) in
E, we have δ(s, v) ≤ δ(s, u) + w(u, v).

Proof. Suppose there is a path from s to u. Then, let p be
a shortest path from s to u, and p' be p followed by (u, v).
p' is a path from s to v of length δ(s, u) + w(u, v), so the
shortest path from s to v has length no larger than that.

If there is not a path from s to u, then δ(s, u) = ∞.
Regardless of whether there is a path from s to v,
δ(s, v) ≤ δ(s, u). ■

© 2020 Shermer Single-Source Shortest Paths II 22

Other Useful Lemmas
Other lemmas that were used in the full proofs of the theorems
of this chapter are contained in section 24.5. They are mostly
simple and intuitive. Please read them!

