Classification: Linear Models

Oliver Schulte

Deep Learning 980

Classification Problems

Machine Learning as Program Synthesis

• We can think of a machine learning system as a program that produces a program

Classifying Examples

- Many predictive problems in machine learning seek to build a program with the following I/O specs.
- Input: A list/tuple/vector of **features** $x_1,...,x_m$
- Output: A discrete class label.
 - If there are only two possible classes/labels, we have a **binary** classification problem.

Examples

- Will the person vote conservative, given age, income, previous votes?
- Is the patient at risk of diabetes given body mass, age, blood test measurements?
- Predict Earthquake vs. nuclear explosion given body wave magnitude and surface wave magnitude.

Learning to Classify

- For classification, there are many datasets of the form (input₁,output₁),..., (input_n, output_n)
 - Mathematical notation: $(x_1, y_1), \dots, (x_n, y_n)$.
 - If y is discrete \rightarrow <u>classification</u> problem
 - If y is continuous $\rightarrow \underline{\text{regression}}$ problem
 - ➤ Supervised Learning: the data tell us the right answer
 - The basis of most neural net methods

Example Data

Russell and Norvig Figure 18.15

7/57

Example: Classifying Digits

- Classify image as "7" vs. "not 7".
- Represent input image as vector **x** with 28x28 = 784 numbers.
- Discussion: is this representation a good idea?

Linear Classification Models

Linear Classification Models

- General Idea:
- 1. Simple linear model $y(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$
 - **w** is a list of <u>weight parameters</u> to be learned
- 2. Classify as positive if y(x) crosses a threshold, typically 0.
 - The **decision boundary** y(x)=0 defines a line for 2 input features, a hyperplane for > 2.

Example: Linear Separation

Russell and Norvig Figure 18.15

11/57

Example: Classifying Digits

- Classify input vector as "7" vs. "not 7".
- Represent input image as vector \mathbf{x} with 28x28 = 784 numbers.
- Target t = 1 for "positive", -1 for "negative".
- Prediction function y: $R^{784} \rightarrow R$.
- Classify \mathbf{x} as positive if $y(\mathbf{x}) > 0$, negative o.w.
- Discussion: how can we handle multiple classes, e.g. digits from 1..10?

The Bias Weight

- Usually a linear includes a bias term (aka intercept, baseline) b.
 - E.g. $y(x_1, x_2) = b + w_1 x_1 + w_2 x_2$
- Equivalently: add an imaginary constant 1 input $x_0 = 1$ and set $b = w_0$
 - E.g. $y(x_0 = 1, x_1, x_2) = \mathbf{w} \cdot \mathbf{x} = w_0 x_0 + w_1 x_1 + w_2 x_2 = w_0 1 + w_1 x_1 + w_2 x_2$

Strengths of Linear Classifiers

- Efficient to learn
- Interpretable
 - in many applications, the "effects" are most important which features receive the biggest weight.
- Can quantify predictive uncertainty
 - derive confidence bounds on accuracy of predictions.
- In machine learning, interpretability and quantifying uncertainty often go together, but trade off against accuracy.
- Science manages to combine all three.

Convexity and Linear Separability

- A set of points *C* is convex if for any two points \mathbf{x} , \mathbf{y} in *C*, fraction $0 \le \alpha \le 1$ we have $\alpha \mathbf{x} + (1 \alpha) \mathbf{y}$ is also in *C*.
- If two classes are linearly separable, they are convex.
- <u>Separating Hyperplane Theorem</u>: There exists a linear separator for two disjoint sets (classes) if and only if each each set (class) is convex.
- Illustration

Linear Separability and Convexity

Data with outliers removed: convex, separable

Original data: non-convex, non-separable

Nonseparability

- Linear discriminants can solve problems only if the classes can be separated by a line (hyperplane).
- Canonical example of non-separable problem is X-OR.

Responses to Nonseparability

Classes cannot be separated by a linear discriminant

separate classes not completely but "well"

add unobserved features

Fisher discriminant (not covered) logistic regression

neural network support vector machine

Gradient Descent Learning

Learning a Linear Classifier

- Most learning for continuous data follows a decision-theoretic (Bayesian) approach to learning.
- 1. For a given data set D, define an **error function** E(**w**,D) that measures how well the weights **w** fit the data D.
- 2. Find **w** that minimize the error for a given input data set D.
- 3. In neural net learning, the basic minimization algorithm is **gradient descent**.

Gradient Descent: Choosing a direction

- Intuition: think about trying to find street number 1000 on a block. You stop and see that you are at number 100. Which direction should you go, left or right?
- You initially check every 50 houses or so where you are. What happens when you get closer to the goal 1000?
- The fly and the window: the fly sees that the wall is darker, so the light gradient goes down: bad direction.
- See here for <u>illustration</u> (around 38 sec)

Gradient Descent Scheme

- 1. Initialize weight vectors somehow.
 - Typically randomly, more on this later.
- 2. Update $w_{i+1} := w_i \eta \frac{\partial E}{\partial w_i}$
- 3. Until some convergence criterion is true
- Complexity comment: assuming gradients are easy to compute, every update step is linear in the number of weights.
- Learning time depends on number of steps required until convergence

Gradient Descent in One Dimension

- Update Rule $\mathbf{x} := \mathbf{x} \mathbf{f}'(\mathbf{x})$ where $\mathbf{\eta}$ is a step size Example:
- Try to find y that minimizes $f(y) = y^2$.
- Your current location is y = -3.
- What is f'(y)?
- Answer: the derivative function is *2y*.
- Evaluated at the location -3, the derivative is $\nabla = -6$.
- To minimize, we move in the opposite direction $-\nabla$.
- Letting the step size $\eta = 1$, your new location is -3 (-6) = -3 + 6 = 3

Gradient Descent In Multiple Dimensions

Gradient

$$\nabla E[\vec{w}] \equiv \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots \frac{\partial E}{\partial w_n} \right]$$

Training rule:

$$\Delta \vec{w} = -\eta \nabla E[\vec{w}]$$

i.e.,

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}$$

Gradient Descent: Example.

- Try to find x,y that minimize $f(x,y) = 3x + y^2$.
- Your current location is x = 10, y = -3.
- What is $\frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial y}$
- Answer: the gradient vector is (3, 2y).
- Evaluated at the location (10,-3), the gradient is $\nabla = (3, -6)$.
- To minimize, we move in the opposite direction $-\nabla$.
- Letting the step size $\eta = 1$, your new location is (10,-3) (3,-6) = (7,3).

Gradient Descent: Exercise

- Try to find x,y that minimize $f(x,y) = 3x + y^2$.
- Your current location is x = 7, y = 3.
- The gradient vector is (3, 2y).
- Letting the step size $\eta = 1$, what is your new location?
- Demos
 - Visualization
 - Excel Demo
 - UBC neural net tool

Perceptron Learning

Defining an Error Function

- General idea:
- 1. Encode class label using a real number t.
 - e.g., "positive" = 1, "negative" = 0 or "negative" = -1.
 - This is the first example we see of *embedding*.
- 2. Measure error or **loss** by comparing continuous linear output *y* and class label code *t*.
- 3. Obvious loss function is 0-1: 0 if prediction correct, 1 otherwise.
- 4. In practice use *convex* upper bounds on 0-1 loss: $loss(y,t) \ge 0$ if prediction correct $loss(y,t) \ge 1$ if prediction false

Perceptrons

- Perceptrons are a precursor to neural nets.
 - Analog implementation by Rosenblatt in the 1950s

The Perceptron Error Function

- Let y = 1 for positive class, y = -1 for negative
- An example is misclassified if and only if $(x_i \cdot w)y_i < 0$
 - Exercise: Take a moment to verify this.
- <u>Perceptron Error</u> (fixed dataset *D*)

$$E(\mathbf{w}) = \sum_{i \in M} (x_j \cdot \mathbf{w}) y_j$$

where *M* is the set of misclassified inputs, the **mistakes**.

- Exercise: find the gradient of the error function for a single input \mathbf{x}_i .
- Solution:
 - 0 if \mathbf{x}_i is correctly classified.
 - - $\mathbf{x}_i \mathbf{y}_i$ O.W.
- What is the gradient descent weight update formula?

Perceptron Demo

Perceptron Learning Analysis

- **Theorem** If the classes are linearly separable, the perceptron learning algorithm converges to a weight vector that separates them.
- Number of steps to convergence has a theoretical upper bound.
 - In deep learning, usually no bound
- Sensitive to initialization.
- If classes are not linearly separable (e.g. X-OR), typically fails to converge.

Least-Squares Error Function

- Venerable idea (19th century)
- 1. For each data point, find the difference between predicted and observed value
- 2. Square the difference
- 3. Sum/average the squared differences
- Does not work well for classification problems
 - But widely used for regression

$$E(\mathbf{w}) = 1/2 \sum_{j} ((x_j \cdot \mathbf{w}) - \mathbf{y}_j)^2$$

Logistic Regression

From Values to Probabilities

- Key idea: instead of predicting a class label, predict the probability of a class label.
- E.g., p+ = P(class is positive | features)
 p- = P(class is negative | features)
- Naturally a continuous quantity.
- How to turn a <u>real number</u> *y* into a <u>probability</u> p+?

The Logistic Sigmoid Function

- Definition: $\sigma(y) = \frac{1}{1 + \exp(-y)}$
- Squeezes the real line into [0,1].
- Differentiable: $\frac{d\sigma}{dy} = \sigma(1-\sigma)$ (nice exercise)

Soft threshold interpretation

- If y > 0, $\sigma(y)$ goes to 1 very quickly.
- If y < 0, $\sigma(y)$ goes to 0 very quickly.

Probabilistic Interpretation

- The sigmoid can be interpreted in terms of the **class odds** p+/(1-p+).
- Exercise: Show the following implication for the class odds:

$$p^{+} = \frac{1}{1 + \exp(-y)} \Longrightarrow \frac{p^{+}}{1 - p^{+}} = \exp(y)$$

• Therefore $y = \ln(\frac{p^+}{1 - p^+}) = \text{the } \log \text{ class odds}.$

Logistic Regression

• In logistic regression, the log-class odds are a linear function of the input features: $\ln(\frac{p^+}{1-p^+}) = \mathbf{x} \cdot \mathbf{w}$

• Learning logistic regression is conceptually similar to linear regression.

• Log-linear (or exponential) models are the "nicest" general family of statistical models.

Logistic Regression: Maximum Likelihood

- Notation: the probability that the n-th input example is positive = which p_q depends on a weight vector \mathbf{w} .
- Positive example has $y_i = 1$, negative $y_i = 0$.
- Then the likelihood assigned to N independent training data is $p(y; w) = \prod_{j=1}^{N} (p_j^+)^{y_j} (1 p_j^+)^{y_j}$
- ➤ The <u>cross-entropy error</u>

$$E(w) = -\ln p(y; w) = -\sum_{j=1}^{N} y_j \ln(p_j^+) + (1 - y_j) \ln(1 - p_j^+)$$

• Equivalent to minimizing the KL divergence between the predicted class probabilities and the observed class frequencies.

Weight Learning

• Homework Exercise: find the gradient of the cross-entropy error function wrt a single input \mathbf{x}_n

$$E(w) = -\sum_{j=1}^{N} y_{j} ln(p_{j}^{+}) + (1 - y_{j}) ln(1 - p_{j}^{+})$$

- Hint: recall that $\frac{d\sigma}{dv} = \sigma(1-\sigma)$
- No closed form minimum since p_j^+ is non-linear function of input features.
- Can use gradient descent. See **Stanford Demo** with softmax.
- Better approach: Use Iterative Reweighted Least Squares (IRLS).

Example logistic regression model learned on non-separable data

Multi-Class Example

- Logistic regression can be extended to multiple classes.
- Here's a picture of what decision boundaries can look like.

Multi-Class Problems and the SoftMax Function

- Generic multi-class probabilistic prediction
- 1. Build prediction models $y_1(\mathbf{x}), y_2(\mathbf{x}), ... y_k(\mathbf{x})$, one for each of the k classes.
- 2. Transform the numbers into probabilities:
 - 1. Map each $y_i(\mathbf{x})$ to $\exp\{y_i(\mathbf{x})\}\$
 - 2. Divide by the sum: $\sigma(\mathbf{x})_{i} = \exp\{y_{i}(\mathbf{x})\} / \Sigma i \exp\{y_{i}(\mathbf{x})\}$

Linear Algebra Notation

- Suppose we build 10 linear models $y_1(\mathbf{x}), y_2(\mathbf{x}), ..., y_{10}(\mathbf{x})$, for 10 classes.
- For a data matrix X, the linear model predictions for each data point can be written like this (including the bias terms) Y = XW + B
- What are the dimensions of **X,W,Y,B** and what do they represent?

Feature Transformations

Basis Functions

Example

- $\phi_1(x_1, x_2)$ measures distance from left green cross
- $\varphi_2(x_1, x_2)$ measures closeness to centre green cross
- <u>3D demo</u>

Visualize Transformation

Transformations can keep/increase/decrease original dimensionality

Summary I

- Linear classification: learn a linear function of features that separates positive and negative classes.
- Find feature weights by minimizing an error function.
- Different error functions used:
 - perceptron
 - cross-entropy (logistic regression)
 - max-margin (support vector machines, not discussed)
 - Least squares (for regression not classification)
- If classes are not linearly separable, no linear classifier is 100% accurate.
- Options:
 - use the best line you can \rightarrow logistic regression
 - use non-linear prediction function \rightarrow neural nets

Looking Ahead to Deep Learning

- Neural nets:
 - Hidden layers transform the input features
 - Output nodes perform linear classification/regression on the transformed features
- Deep neural nets: transform input features, transform the transformed features,, again and again
- The transformations are *learned* not fixed