
Oliver Schulte

Deep Learning 980

Classification: Linear Models

Classification Problems

3/57

Machine Learning as Program Synthesis
� We can think of a machine learning system as a program that

produces a program

4/57

Classifying Examples
� Many predictive problems in machine learning seek to build a

program with the following I/O specs.
� Input: A list/tuple/vector of features x1,..,xm

� Output: A discrete class label.
� If there are only two possible classes/labels, we have a binary

classification problem.

5/57

Examples
� Will the person vote conservative, given age, income, previous

votes?
� Is the patient at risk of diabetes given body mass, age, blood test

measurements?
� Predict Earthquake vs. nuclear explosion given body wave

magnitude and surface wave magnitude.

Age Income Votes

Convervative

disaster
type

surface
wave
magnitude

body wave
magnitude

6/57

Learning to Classify
� For classification, there are many datasets of the form

(input1,output1),…, (inputn, outputn)

� Mathematical notation: (x1,y1),…,(xn,yn).
� If y is discrete → classification problem
� If y is continuous → regression problem

ØSupervised Learning: the data tell us the right answer
• The basis of most neural net methods

7/57

Example Data

Russell and Norvig Figure 18.15

white = earthquake

black = nuclear explosion

x1 = surface
wave
magnitude

x2 = body
wave
magnitude

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

8/57

Example: Classifying Digits
� Classify image as “7” vs. “not 7”.
� Represent input image as vector x with 28x28

=784 numbers.
� Discussion: is this representation a good idea?

2 CHAPTER 1. FEED-FORWARD NEURAL NETS

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 185 159 151 60 36 0 0 0 0 0 0 0 0 0
8 254 254 254 254 241 198 198 198 198 198 198 198 198 170
9 114 72 114 163 227 254 225 254 254 254 250 229 254 254
10 0 0 0 0 17 66 14 67 67 67 59 21 236 254
11 0 0 0 0 0 0 0 0 0 0 0 83 253 209
12 0 0 0 0 0 0 0 0 0 0 22 233 255 83
13 0 0 0 0 0 0 0 0 0 0 129 254 238 44
14 0 0 0 0 0 0 0 0 0 59 249 254 62 0
15 0 0 0 0 0 0 0 0 0 133 254 187 5 0
16 0 0 0 0 0 0 0 0 9 205 248 58 0 0
17 0 0 0 0 0 0 0 0 126 254 182 0 0 0
18 0 0 0 0 0 0 0 75 251 240 57 0 0 0
19 0 0 0 0 0 0 19 221 254 166 0 0 0 0
20 0 0 0 0 0 3 203 254 219 35 0 0 0 0
21 0 0 0 0 0 38 254 254 77 0 0 0 0 0
22 0 0 0 0 31 224 254 115 1 0 0 0 0 0
23 0 0 0 0 133 254 254 52 0 0 0 0 0 0
24 0 0 0 61 242 254 254 52 0 0 0 0 0 0
25 0 0 0 121 254 254 219 40 0 0 0 0 0 0
26 0 0 0 121 254 207 18 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1.1: An Mnist discretized version of an image

Figure 1.2: A black on white image from the pixels of Figure 1.1

2 CHAPTER 1. FEED-FORWARD NEURAL NETS

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 185 159 151 60 36 0 0 0 0 0 0 0 0 0
8 254 254 254 254 241 198 198 198 198 198 198 198 198 170
9 114 72 114 163 227 254 225 254 254 254 250 229 254 254
10 0 0 0 0 17 66 14 67 67 67 59 21 236 254
11 0 0 0 0 0 0 0 0 0 0 0 83 253 209
12 0 0 0 0 0 0 0 0 0 0 22 233 255 83
13 0 0 0 0 0 0 0 0 0 0 129 254 238 44
14 0 0 0 0 0 0 0 0 0 59 249 254 62 0
15 0 0 0 0 0 0 0 0 0 133 254 187 5 0
16 0 0 0 0 0 0 0 0 9 205 248 58 0 0
17 0 0 0 0 0 0 0 0 126 254 182 0 0 0
18 0 0 0 0 0 0 0 75 251 240 57 0 0 0
19 0 0 0 0 0 0 19 221 254 166 0 0 0 0
20 0 0 0 0 0 3 203 254 219 35 0 0 0 0
21 0 0 0 0 0 38 254 254 77 0 0 0 0 0
22 0 0 0 0 31 224 254 115 1 0 0 0 0 0
23 0 0 0 0 133 254 254 52 0 0 0 0 0 0
24 0 0 0 61 242 254 254 52 0 0 0 0 0 0
25 0 0 0 121 254 254 219 40 0 0 0 0 0 0
26 0 0 0 121 254 207 18 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1.1: An Mnist discretized version of an image

Figure 1.2: A black on white image from the pixels of Figure 1.1

Linear Classification Models

10/57

Linear Classification Models
� General Idea:

1. Simple linear model y(x) = w · x
� w is a list of weight parameters to be learned

2. Classify as positive if y(x) crosses a threshold, typically 0.
� The decision boundary y(x)=0 defines a line for 2 input features,

a hyperplane for > 2.
x2

x1

w
x

y(x)
kwk

x?

�w0
kwk

y = 0
y < 0

y > 0

R2

R1

11/57

Example: Linear Separation

Russell and Norvig Figure 18.15

white = earthquake

black = nuclear explosion

x1 = surface
wave
magnitude

x2 = body
wave
magnitude

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

12/57

Example: Classifying Digits
� Classify input vector as “7” vs. “not 7”.
� Represent input image as vector x with 28x28 =784

numbers.
� Target t = 1 for “positive”, -1 for “negative”.
� Prediction function y:R784 èR.
� Classify x as positive if y(x) >0, negative o.w.
� Discussion: how can we handle multiple classes, e.g. digits

from 1..10?

2 CHAPTER 1. FEED-FORWARD NEURAL NETS

7 8 9 10 11 12 13 14 15 16 17 18 19 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 185 159 151 60 36 0 0 0 0 0 0 0 0 0
8 254 254 254 254 241 198 198 198 198 198 198 198 198 170
9 114 72 114 163 227 254 225 254 254 254 250 229 254 254
10 0 0 0 0 17 66 14 67 67 67 59 21 236 254
11 0 0 0 0 0 0 0 0 0 0 0 83 253 209
12 0 0 0 0 0 0 0 0 0 0 22 233 255 83
13 0 0 0 0 0 0 0 0 0 0 129 254 238 44
14 0 0 0 0 0 0 0 0 0 59 249 254 62 0
15 0 0 0 0 0 0 0 0 0 133 254 187 5 0
16 0 0 0 0 0 0 0 0 9 205 248 58 0 0
17 0 0 0 0 0 0 0 0 126 254 182 0 0 0
18 0 0 0 0 0 0 0 75 251 240 57 0 0 0
19 0 0 0 0 0 0 19 221 254 166 0 0 0 0
20 0 0 0 0 0 3 203 254 219 35 0 0 0 0
21 0 0 0 0 0 38 254 254 77 0 0 0 0 0
22 0 0 0 0 31 224 254 115 1 0 0 0 0 0
23 0 0 0 0 133 254 254 52 0 0 0 0 0 0
24 0 0 0 61 242 254 254 52 0 0 0 0 0 0
25 0 0 0 121 254 254 219 40 0 0 0 0 0 0
26 0 0 0 121 254 207 18 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 1.1: An Mnist discretized version of an image

Figure 1.2: A black on white image from the pixels of Figure 1.1

13/57

The Bias Weight
� Usually a linear includes a bias term (aka intercept, baseline) b.

� E.g. y(x1,x2) = b+ w1 x1 + w2 x2

� Equivalently: add an imaginary constant 1 input x0 =1 and set b = w0

� E.g. y(x0 =1, x1,x2) = w · x = w0 x0+ w1 x1 + w2 x2 = w0 1+ w1 x1 + w2 x2

14/57

Strengths of Linear Classifiers
� Efficient to learn

� Interpretable
� in many applications, the “effects” are most important – which

features receive the biggest weight.

� Can quantify predictive uncertainty
� derive confidence bounds on accuracy of predictions.

� In machine learning, interpretability and quantifying
uncertainty often go together, but trade off against accuracy.

� Science manages to combine all three.

15/57

Convexity and Linear Separability
� A set of points C is convex if for any two points x,y in C,

fraction 0≤α≤1 we have αx+(1-α)y is also in C.
� If two classes are linearly separable, they are convex.
� Separating Hyperplane Theorem: There exists a linear

separator for two disjoint sets (classes) if and only if each
each set (class) is convex.

� Illustration

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

16/57

Linear Separability and Convexity

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

Data with outliers removed:
convex, separable

Original data:
non-convex, non-separable

17/57

Nonseparability
� Linear discriminants can solve problems only if the classes

can be separated by a line (hyperplane).
� Canonical example of non-separable problem is X-OR.

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

18/57

Responses to Nonseparability

Classes cannot be separated by a linear discriminant

Fisher discriminant (not covered)
logistic regression

separate classes not completely
but “well”

neural network
support vector machine

add unobserved features

19/57

Gradient Descent Learning

20/57

Learning a Linear Classifier
� Most learning for continuous data follows a decision-theoretic

(Bayesian) approach to learning.
1. For a given data set D, define an error function E(w,D) that

measures how well the weights w fit the data D.
2. Find w that minimize the error for a given input data set D.
3. In neural net learning, the basic minimization algorithm is

gradient descent.

21/57

Gradient Descent: Choosing a direction
� Intuition: think about trying to find street number 1000 on a

block. You stop and see that you are at number 100. Which
direction should you go, left or right?

� You initially check every 50 houses or so where you are. What
happens when you get closer to the goal 1000?

� The fly and the window: the fly sees that the wall is darker, so
the light gradient goes down: bad direction.

� See here for illustration (around 38 sec)

https://www.thebeaverton.com/2018/08/local-fly-is-certain-this-window-is-the-way-out/
https://www.youtube.com/watch%3Fv=zieqD5aa8nM

22/57

Gradient Descent Scheme
1. Initialize weight vectors somehow.

� Typically randomly, more on this later.

2. Update

3. Until some convergence criterion is true
� Complexity comment: assuming gradients are easy to

compute, every update step is linear in the number of weights.

Ø Learning time depends on number of steps required until convergence

wi+1 := wi −η
∂E
∂wi

23/57

Gradient Descent in One Dimension
� Update Rule

x := x – f'(x) where η is a step size
Example:

� Try to find y that minimizes f(y) = y2.

� Your current location is y = -3.
� What is f’(y)?
� Answer: the derivative function is 2y.
� Evaluated at the location -3, the derivative is Ñ= -6.
� To minimize, we move in the opposite direction -Ñ.
� Letting the step size h= 1, your new location is

-3 – (-6) = -3+6=3

24/57

Gradient Descent In Multiple
Dimensions

-1

0

1

2

-2
-1

0
1

2
3

0

5

10

15

20

25

w0 w1

E
[w

]

25/57

Gradient Descent: Example.
� Try to find x,y that minimize

f(x,y) = 3x + y2.

� Your current location is x = 10, y = -3.

� What is ? ?

� Answer: the gradient vector is (3, 2y).

� Evaluated at the location (10,-3), the gradient is Ñ= (3, -6).

� To minimize, we move in the opposite direction -Ñ.

� Letting the step size h= 1, your new location is
(10,-3) - (3,-6) = (7, 3).

€

∂f
∂x

€

∂f
∂y

26/57

Gradient Descent: Exercise
� Try to find x,y that minimize

f(x,y) = 3x + y2.

� Your current location is x = 7, y = 3.

� The gradient vector is (3, 2y).

� Letting the step size h= 1, what is your new location?
� Demos

� Visualization

� Excel Demo
� UBC neural net tool

http://www.onmyphd.com/%3Fp=gradient.descent
http://gradient-demo.xlsx

Perceptron Learning

35/57

Defining an Error Function
� General idea:
1. Encode class label using a real number t.

� e.g., “positive” = 1, “negative” = 0 or “negative” = -1.
� This is the first example we see of embedding.

2. Measure error or loss by comparing continuous linear output y
and class label code t.

3. Obvious loss function is 0-1:
0 if prediction correct, 1 otherwise.

4. In practice use convex upper bounds on 0-1 loss:
loss(y,t) ≥ 0 if prediction correct
loss(y,t) ≥ 1 if prediction false

36/57

Perceptrons
� Perceptrons are a precursor to

neural nets.
� Analog implementation by

Rosenblatt in the 1950s

4 CHAPTER 1. FEED-FORWARD NEURAL NETS

Σ

Figure 1.3: Schematic diagram of a perceptron

Figure 1.4: A typical neuron

37/57

The Perceptron Error Function
� Let y = 1 for positive class, y = -1 for negative
� An example is misclassified if and only if

� Exercise: Take a moment to verify this.
� Perceptron Error (fixed dataset D)

where M is the set of misclassified inputs, the mistakes.
� Exercise: find the gradient of the error function for a single input xj.
� Solution:

� 0 if xj is correctly classified.
� - xjyj o.w.

� What is the gradient descent weight update formula?

𝐸 𝒘 = $
%∈'

𝑥%) 𝒘 𝒚𝒋

𝑥%) 𝒘 𝒚𝒋<0

38/57

Perceptron Demo

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

weight
vector =
black

39/57

Perceptron Learning Analysis
� Theorem If the classes are linearly separable, the perceptron

learning algorithm converges to a weight vector that separates them.
� Number of steps to convergence has a theoretical upper bound.

� In deep learning, usually no bound

� Sensitive to initialization.
� If classes are not linearly separable (e.g. X-OR), typically fails to

converge.

40/57

Least-Squares Error Function

• Venerable idea (19th century)
1. For each data point, find the difference between

predicted and observed value
2. Square the difference
3. Sum/average the squared differences
• Does not work well for classification problems
• But widely used for regression

𝐸 𝒘 = 1/2$
%
(𝑥%) 𝒘 − 𝒚𝒋)2

41/57

Logistic Regression

42/57

From Values to Probabilities
� Key idea: instead of predicting a class label, predict the

probability of a class label.
� E.g., p+ = P(class is positive|features)

p- = P(class is negative|features)
� Naturally a continuous quantity.
� How to turn a real number y into a probability p+?

43/57

The Logistic Sigmoid Function
� Definition:

� Squeezes the real line into [0,1].
� Differentiable: (nice exercise)

σ (y) = 1
1+ exp(−y)

dσ
dy

=σ (1−σ)

−5 0 5
0

0.5

1

44/57

Soft threshold interpretation

Figure Russell and Norvig 18.17

� If y> 0, σ(y) goes to 1 very quickly.

� If y<0, σ(y) goes to 0 very quickly.

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8
 0

 0.5

 1

-6 -4 -2 0 2 4 6

45/57

Probabilistic Interpretation
� The sigmoid can be interpreted in terms of the class odds

p+/(1-p+).
� Exercise: Show the following implication for the class odds:

� Therefore the log class odds.

p+ = 1
1+ exp(−y)

⇒
p+

1− p+
= exp(y)

€

y = ln(p+

1− p+) =

46/57

Logistic Regression
� In logistic regression, the log-class odds are a linear function

of the input features:

� Learning logistic regression is conceptually similar to linear
regression.

� Log-linear (or exponential) models are the “nicest” general
family of statistical models.

ln(p+

1− p+
) = x•w

47/57

Logistic Regression: Maximum
Likelihood
� Notation: the probability that the n-th input example is positive =

which depends on a weight vector w.
� Positive example has yj = 1, negative yj = 0.
� Then the likelihood assigned to N independent training data is
𝑝 𝒚;𝒘 = ∏𝒋6𝟏

𝑵 (𝒑𝒋:)𝒚𝒋 (𝟏 − 𝒑𝒋:)𝒚𝒋

Ø The cross-entropy error
E 𝒘 = −ln 𝑝 𝒚;𝒘 =

− ∑𝒋6𝟏𝑵 𝒚𝒋𝒍𝒏(𝒑𝒋:) + (𝟏 −𝒚𝒋)𝒍𝒏(𝟏 − 𝒑𝒋:)

� Equivalent to minimizing the KL divergence between the predicted class
probabilities and the observed class frequencies.

pn
+

E(w) = − ln p(t |w) = − {tn ln(pn
+)

n=1

N

∑ + (1− tn)ln(1− pn
+)}

48/57

Weight Learning
� Homework Exercise: find the gradient of the cross-entropy

error function wrt a single input xn

� Hint: recall that

� No closed form minimum since 𝑝%: is non-linear function of
input features.

� Can use gradient descent. See Stanford Demo with softmax.
� Better approach: Use Iterative Reweighted Least Squares

(IRLS).

dσ
dy

=σ (1−σ)

E 𝒘 = −$
𝒋6𝟏

𝑵

𝒚𝒋𝒍𝒏(𝒑𝒋:) + (𝟏 −𝒚𝒋)𝒍𝒏(𝟏 − 𝒑𝒋:)

http://vision.stanford.edu/teaching/cs231n/linear-classify-demo/

49/57

Example logistic regression model
learned on non-separable data

Figure Russell and Norvig 18.17

-2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

50/57

Multi-Class Example
� Logistic regression can be extended to multiple classes.

� Here’s a picture of what decision boundaries can look like.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

51/57

Multi-Class Problems and the SoftMax
Function
� Generic multi-class probabilistic prediction

1. Build prediction models y1(x),y2(x),..yk(x), one for each
of the k classes.

2. Transform the numbers into probabilities:
1. Map each yi(x) to exp{yi(x)}
2. Divide by the sum:

σ(x)j =exp{yj(x)}/Σi exp{yi(x)}

52/57

Linear Algebra Notation
� Suppose we build 10 linear models y1(x),y2(x),..y10(x), for

10 classes.
� For a data matrix X , the linear model predictions for each

data point can be written like this (including the bias terms)
Y = XW + B

� What are the dimensions of X,W,Y,B and what do they
represent?

Feature Transformations
Basis Functions

61/57

Example

Figure Bishop 4.12 see also

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

• φ1(x1,x2) measures distance from left green cross
• φ2(x1,x2) measures closeness to centre green cross
• 3D demo

https://www.youtube.com/watch%3Fv=3liCbRZPrZA

62/57

Visualize Transformation

1 2 3

-2 -5 3 2 0

continuous
function

original data

transformed
data

Transformations can keep/increase/decrease original dimensionality

68/57

Summary I
� Linear classification: learn a linear function of features that separates

positive and negative classes.
� Find feature weights by minimizing an error function.
� Different error functions used:

� perceptron
� cross-entropy (logistic regression)
� max-margin (support vector machines, not discussed)
� Least squares (for regression not classification)

� If classes are not linearly separable, no linear classifier is 100% accurate.
� Options:

� use the best line you can → logistic regression
� use non-linear prediction function → neural nets

69/57

Looking Ahead to Deep Learning
� Neural nets:

� Hidden layers transform the input features
� Output nodes perform linear classification/regression on the

transformed features

� Deep neural nets: transform input features, transform the
transformed features,, again and again

� The transformations are learned not fixed

