Chapter 3: Generative models for discrete
data
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Concept learning
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Occam's razor: Prefer the simplest
hypothesis



Posterior




Choosing a hypothesis

Maximum a posteriori (MAP) estimate:

WMAY = argmax;, 4, p(h|D)

= argmax;, 4, log p(D|h) + log p(h)

Maximum likelihood estimate (MLE):

V" = argmax;, 4, log p(D|h)



Posterior predictive distribution

p(§ =1Z,D) =Y p(§=1|F h)p(h|D)



Exercise 2.6 Conditional independence

(Source: Koller.)

a. Let H € {1,..., K} be a discrete random variable, and let e; and e> be the observed values of two
other random variables £ and E2. Suppose we wish to calculate the vector

P(Hle1,e2) = (P(H = 1|e1, e2),...,P(H = Kle1, e2))

Which of the following sets of numbers are sufficient for the calculation?
i. P(ei,e2), P(H), P(e1|H), P(e2|H)

ii. Plei,e2), P(H), P(e1,e2|H)

iii. P(e1|H), P(e2|H), P(H)

b. Now suppose we now assume F;1 | FE>|H (i.e., E1 and E2 are conditionally independent given H).
Which of the above 3 sets are sufficient now?

Show your calculations as well as giving the final result. Hint: use Bayes rule.
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Beta-binomial model

Bin(k|n, ) = (Z) 0" (1— )" "



Binomial vs Bernoulli distributions

Xz' ~ Ber(@)
P(X;|0) =04 (1 —0)



Beta-binomial model

Beta(f|a,b) = P (1 — )1




Beta-binomial model

p(@|D) o Bin(N1|0, Ng + N1)Beta(f|a,b) o< Beta(0|N1 + a, No + b)

p(0]D) o p(D|0)p(d) = N1 (1 — 0)Nog? (1 —9)° = oN1+2 (1 — g)No+?



Beta-binomial model




Dirichlet-multinomial model

p(D|0) H A

Dir(0la) = B( Heak (x € Sk)
k=1




Naive Bayes

AN



Question 2.17

Suppose X, Y are two points sampled independently
and uniformly at random from the interval [0,1]. What is
the expected value of the lower value of the two?



Exercise 2.7 Pairwise independence does not imply mutual independence

We say that two random variables are pairwise independent if

p(X2|X1) = p(X2) (2.125)
and hence
p(X2, X1) = p(X1)p(X2|X1) = p(X1)p(X2) (2.126)

We say that n random variables are mutually independent if

p(Xi|Xs) = p(X:) VS C{1,...,n}\ {i} (2.127)
and hence
p(X1n) = | [ p(X3) (2.128)
1=1

Show that pairwise independence between all pairs of variables does not necessarily imply mutual inde-
pendence. It suffices to give a counter example.



