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Problem1 : Textbook 21.6

In Chapter 21.4, we have derived the mean field method update equation for the Ising model:

µi = tanh

(∑
j∈nbri

Wijµj + 0.5(L+
i − L−i )

)

An alternative way to derive the above update equations is to derive the variational free
energy, and to optimize it wrt the ai explicitly. Complete this derivation.

Recall that the variational free energy J(q) is defined as

J(q) = Eq[log q(x)] + Eq[−log p̃(x)] = −H(q) + Eq[E(x)]

Problem 2

Suppose we think p(x|D) N(µ, σ2) with µ > 0, and we would like to derive a variational
approximation q(x) ∼ Uniform(0, a), with a > 0. Derive a.

Problem 3: Textbook 21.7 Forwards vs reverse KL di-

vergence

Consider a factored approximation q(x, y) = q(x)q(y) to a joint distribution p(x, y). Show
that to minimize the forwards KL divergence KL(p||q) we should set q(x) = p(x) and
q(y) = p(y). That is, the optimal approximation is a product of marginals. Now consider
the following joint distribution, where the rows represent y and the columns x.

x
1 2 3 4

1 1/8 1/8 0 0
2 1/8 1/8 0 0
3 0 0 1/4 0
4 0 0 0 1/4

Show that the reverse KL(q||p) for this p has three distinct minima. Identify those minima
and evaluate KL(q||p) at each of them. What is the value of KL(q||p) if we set q(x, y) =
p(x)p(y)?

Problem 4

Consider a three-variable factorial hidden Markov model: We have three hidden variables at
each time step t, X1,t, X2,t, X3,t and one observed variable Yt. Yt depends just on the hidden
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variables at its time step (X1,t, X2,t, X3,t). Xi,t depends on just Xi,t−1. Draw a Bayes net,
factor graph and Markov random field that represent this model for t = 1 . . . 4.

Problem 5

Define the weighted Euclidean distance as

dw(xi, xj) =

∑
k = 1Kwk(xik − xjk)2∑K

k=1wk

. (1)

Show that weighted Euclidean distance on x is equivalent to unweighted Euclidean distance
on z, where

zik = xik

√
wk∑K
k=1wk

. (2)

Problem 6: An EM algorithm for a Mixture of Bernoullis

In this problem, you will derive an expectation-maximization (EM) algorithm to cluster black
and white images. The inputs x(i) can be thought of as vectors of binary values corresponding
to black and white pixel values, and the goal is to cluster the images into groups. You will
be using a mixture of Bernoullis model to tackle this problem.

For the sake of brevity, you do not need to substitute in previously derived expression in
later problems.For example, beyond question 1.(a) you may use P (x(i)|p(k)) in your answers.

1. Mixture of Bernoullis

(a) Consider a vector of binary random variables, x ∈ {0, 1}D. Assume each variable
xd is drawn from a Bernoulli(pd) distribution, so P (xd = 1) = pd. Let p ∈ (0, 1)D

be the resulting vector of Bernoulli parameters. Write an expression for P (x|p).
(b) Now suppose we have a mixture of K Bernoulli distributions: each vector x(i) is

drawn from some vector of Bernoulli random variables with parameters p(k)) , we
will call this Bernoulli(p(k)). Let {p(1), ..., p(k)} = p. Assume a distribution π(k)
over the selection of which set of Bernoulli parameters p(k) is chosen. Write an
expression for P (x(i)|p, π).

(c) Finally, suppose we have inputs X = {x(i)}i=1...n. Using the above, write an
expression for the log likelihood of the data X, log P (X|π,p)

2. Expectation step
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(a) Now, we introduce the latent variables for the EM algorithm. Let z(i) ∈ {0, 1}K
be an indicator vector, such that z(i) = 1 if x(i) was drawn from a Bernoulli(p(k)),
and 0 otherwise. Let Z = {z(i)}i=1...n.

What is P (z(i)|π)? What is P (x(i)|z(i),p, π) ?

(b) Using the above two quantities, derive the likelihood of the data and the latent
variables, P (Z,X|π,p).

(c) Let η(z
(i)
k ) = E[z

(i)
k |x(i), π,p]. Show that

η(z
(i)
k ) =

πk
∏D

d=1(p
(k)
d )x

(i)
d (1− p(k)d )1−x

(i)
d∑

j πj
∏D

d=1(p
(j)
d )x

(i)
d (1− p(j)d )1−x

(i)
d

Let p̃, π̃ be the new parameters that we’d like to maximize, so p, π are from the
previous iteration. Use this to derive the following final expression for the E step
in the expectation-maximization algorithm:

E[log P (Z,X|p̃, π̃)|X,p, π)] =

N∑
i=1

K∑
k=1

η(z
(i)
k )

[
log π̃k +

D∑
d=1

(
x
(i)
d log

˜
p
(k)
d + (1− x(i)d )log(1− ˜

p
(k)
d )
)]

3. Maximization step

(a) We need to maximize the above expression with respect to p̃, π̃. First, show that
the value of p̃ that maximizes the E step is

˜p(k) =

∑N
i=1 η(z

(i)
k )x(i)

Nk

where Nk =
∑N

i=1 η(z
(i)
k ).

(b) Show that the value of π̃ that maximizes the E step is

π̃k =
Nk∑
k′ Nk′
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