Problem 1 (Textbook exercise 10.1): Marginalizing a node in a DGM

Consider the DAG G in the following figure. Assume it is a minimal I-map for $p(A, B, C, D, E, F, X)$. Now consider marginalizing out X. Construct a new DAG G^{\prime} which is a minimal I - map for $p(A, B, C, D, E, F)$. Specify (and justify) which extra edges need to be added.

Problem 2 (Textbook exercise 10.2): d-separation.

Here we compute some global independence statements from some directed graphical models. You can use the "Bayes ball" algorithm, the d-separation criterion, or the method of converting to an undirected graph (all should give the same results).

(b)

(c)

1. Consider the DAG in Figure (b). List all variables that are independent of A given evidence on B.
2. Consider the DAG in Figure (c). List all variables that are independent of A given evidence on J.

Problem 3: Surprise Candy company

The Surprise Candy company makes candy in two flavors: 70% are strawberry flavor and 30% are anchovy flavor. Each new piece of candy starts out with a round shape; as it moves down the production line, a machine randomly selects a certain percentage to be trimmed into a square; then, each piece is wrapped in a wrapper whose color is chosen randomly to be red or brown. 80% of strawberry candies are round and 80% have a red wrapper, while 90% of the anchovy candies are square and 90% have a brown wrapper. All candies are sold individually in sealed, identical black boxes.
Now you, the customer, have just bought a Surprise candy at the store but have not yet opened the box.
Consider these three Bayes nets.

(i)

(ii)

(iii)

1. Which network(s) can correctly represent P (Flavor, Wrapper, Shape)?
(i)
(ii)
(iii)
2. Which network is the best representation for this problem?
(i) (ii) (iii)
3. True/False: Network (i) asserts that P (Wrapper \mid Shape $)=P$ (Wrapper) . \qquad
4. What is the probability that your candy has a red wrapper?
(i) 0.8
(ii) 0.56
(iii) 0.59
5. In the box is a round candy with a red wrapper. The probability that its flavor is strawberry is
(i) ≤ 0.7
(ii) Between 0.7 and 0.99
(iii) >0.99
6. (An unwrapped strawberry candy is worth s on the open market and an unwrapped anchovy candy is worth a. Write an expression for the value of an unopened candy box.

Problem 4 (Textbook exercise 10.5): Rainy day

In this question you must model a problem with 4 binary variables: $\mathrm{G}=$ " gray", $\mathrm{V}=$ ="Vancouver", $\mathrm{R}=$ "rain" and $\mathrm{S}=$ "sad". Consider the directed graphical model describing the relationship between these variables shown in Figure.

1. Write down an expression for $P(S=1 \mid V=1)$ in terms of $\alpha, \beta, \gamma, \delta$.
2. Write down an expression for $P(S=1 \mid V=0)$. Is this the same or different to $P(S=1 \mid V=1)$? Explain why.
3. Find maximum likelihood estimates of α, β, γ using the following data set, where each row is a training case. (You may state your answers without proof.)

V	G	R	S
1	1	1	1

$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$
1000

Problem 5 (Textbook exercise 11.3): Bernoulli EM

1. Show that the M step for ML estimation of a mixture of Bernoullis is given by

$$
\mu_{k j}=\frac{\sum_{i} r_{i k} x_{i j}}{\sum_{i} r_{i k}}
$$

2. Show that the M step for MAP estimation of a mixture of Bernoullis with a $\operatorname{Beta}(\alpha, \beta)$ prior is given by

$$
\mu_{k j}=\frac{\left(\sum_{i} r_{i k} x_{i j}\right)+\alpha-1}{\left(\sum_{i} r_{i k}\right)+\alpha+\beta-2}
$$

Problem 6 I-Maps and P-Maps

Consider a distribution P over four binary random variables (A, B, C, D), which gives probability $1 / 8$ to assignments $(0,0,0,0)$, and ($1,1,0,0$), and gives probability $1 / 4$ to assignments $(1,1,1,0),(0,1,0,1)$, and $(1,0,1,1)$. A skeleton for the Bayesian network G is also provided; the skeleton contains all the nodes and edges, but the directions of the edges are missing:

1. Decide whether the following two independencies are in $I(P):(C \Perp D),(C \Perp B)$
2. Give a direction to each individual edge in G, such that the resulting Bayesian network is a perfect map of P . Is your solution unique? Briefly state why.
3. Give the CPDs for each node in your Bayesian network specified in (2).

Problem 7 (Textbook exercise 20.3): Message passing on a tree

Consider the DGM in the which represents the following fictitious biological model. Each G_{i} represents the genotype of a person: $G_{i}=1$ if they have a healthy gene and $G_{i}=2$ if they have an unhealthy gene. G_{2} and G_{3} may inherit the unhealthy gene from their parent G_{1}. $X_{i} \in R$ is a continuous measure of blood pressure, which is low if you are healthy and high if you are unhealthy. We define the CPDs as follows

$$
\begin{gathered}
p\left(G_{1}\right)=[0.5,0.5] \\
p\left(G_{2} \mid G_{1}\right)=\left(\begin{array}{ll}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right) \\
p\left(G_{3} \mid G_{1}\right)=\left(\begin{array}{ll}
0.9 & 0.1 \\
0.1 & 0.9
\end{array}\right) \\
p\left(X_{i} \mid G_{i}=1\right)=N\left(X_{i} \mid \mu=50, \sigma^{2}=10\right) \\
p\left(X_{i} \mid G_{i}=2\right)=N\left(X_{i} \mid \mu=60, \sigma^{2}=10\right)
\end{gathered}
$$

The meaning of the matrix for $p\left(G_{2} \mid G_{1}\right)$ is that $p\left(G_{2}=1 \mid G_{1}=1\right)=0.9, p\left(G_{2}=1 \mid G_{1}=\right.$ $2)=0.1$, etc.

1. Suppose you observe $X_{2}=50$, and X_{1} is unobserved. What is the posterior belief on G_{1}, i.e., $p\left(G_{1} \mid X_{2}=50\right)$?
2. Now suppose you observe $X_{2}=50$ amd $X_{3}=50$. What is $p\left(G_{1} \mid X_{2}, X_{3}\right)$? Explain your answer intuitively.
3. Now suppose $X_{2}=60, X_{3}=60$. What is $p\left(G_{1} \mid X_{2}, X_{3}\right)$? Explain your answer intuitively.
4. Now suppose $X_{2}=50, X_{3}=60$. What is $p\left(G_{1} \mid X_{1}, X_{2}\right)$? Explain your answer intuitively.
