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Problem 1

Given that we wish to learn some target function f : X −→ Y , give a brief description on
how to apply Bayes rule as the basis for designing learning algorithms (generative classifier).

Problem 2

1. Given X ⊥⊥ Y |Z, can we say P (X, Y |Z) = P (X|Z)P (Y |Z)? Explain

2. Given X ⊥⊥ Y |Z, can we say P (X, Y ) = P (X)P (Y )? Explain.

3. Suppose X is a vector of n boolean attributes and Y is a single discrete-valued variable
that can take on J possible values. Let θij = P (Xi|Y = yj). What is the number of
independent θij parameters?

Problem 3 (Textbook exercise 3.1): MLE for the Bernoul-

li/ binomial model

Derive Equation θ̂MLE = N1

N
by optimizing the log of the likelihood in Equation p(D|θ) =

θN1(1− θ)N0 .

Problem 4 (Textbook exercise 3.6): MLE for the Poisson

distribution.

The Poisson distribution pmf is defined as

Poi(x|λ) = e−λ
λx

x!
,

for x ∈ {0, 1, 2, . . . } where λ > 0 is the rate parameter. Derive the MLE.
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Problem 5 (Textbook exercise 3.12): MAP estimation

for Bernoulli with non-conjugate priors

Suppose we flip a coin N times and observe N0 tails and N1 heads. Consider the following
prior that believes the coin is either fair or slightly biased towards tails.

p(θ) =


0.5 if θ = 0.5

0.5 if θ = 0.4

0 otherwise

1. Derive the MAP estimate under this prior.

2. Suppose the true parameter is θ = 0.41. When N is small, will this prior or a Beta(1, 1)
prior lead to a MAP estimate that is closer to the true θ? What about when N is large?

Problem 6 (Textbook exercise 3.21). Feature selection

using a naive Bayes classifier with binary features.

One way to select features for a naive Bayes classifier is to use mutual information between
each feature Xj and the class label Y :

I(Xj, Y ) =
∑
xj

∑
y

p(xj, y) log
p(xj, y)

p(xj)p(y)
.

Let πc = p(y = c), θjc = p(xj = 1|y = c) and θj = p(xj = 1) =
∑

c πcθjc. Show that the MI
can be computed as follows

I(Xj, Y ) =
∑
c

[
θjcπc log

θjc
θj

+ (1− θjc)πc log
1− θjc
1− θj

]
.
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Problem 7 (Textbook exercise 3.20): Comparing naive

Bayes with full conditional model

Consider a generative classifier for C classes with class conditional density p(x|y) and uniform
class prior p(y). Suppose all the D features are binary xj ∈ {0, 1}. If we assume all the
features are conditionally independent (the naive Bayes assumption), we can write

p(x|y = c) =
D∏
j=1

Ber(xj|θjc0

This requires DC parameters.

1. Now consider a different model, which we will call the “full” model, in which all the
features are fully dependent (i.e. we make no factorization assumptions). How might
we represent p(x|y = c) in this case? How many parameters are needed to represent
p(x|y = c)?

2. Suppose we train each model by finding the MLE on a training set of N cases. If the
sample size N is very small, which model (naive Bayes or full) is likely to give lower
test set error, and why?

3. If the sample size N is very large, which model is likely to give lower test set error, and
why?

4. What is the computational complexity (in big-Oh notation) of fitting the full and naive
Bayes models respectively as a function of N and D? (You may assume you can convert
a D-bit array to an array index in O(D) time.)

5. What is the computational complexity of applying the full and native Bayes models
respectively at test time to a single test case?

6. Suppose the test case has missing data. Let xv be the visible features of size v and let xh
be the hidden (missing) features of size h, where v+h = D. What is the computational
complexity of computing p(y|xv, θ̂ for the full and naive bayes models, as a function of
v and h?
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Problem 8 (Textbook exercise 5.3). Reject option

In many classification problems one has the option either of assigning x to class j or, if you
are too uncertain, of choosing the reject option. If the cost for rejects is less than the cost of
falsely classifying the object, it may be the optimal action. Let αi mean you choose action i,
for i = 1 : C + 1, where C is the number of classes and C + 1 is the reject action. Let Y = j
be the true (but unknown) state of nature. Define the loss function as follows:

λ(αi|Y = j) =


0, if i = j and i, j ∈ {1, ..., C}
λr, if i = C + 1

λs, Otherwise

In other words, you incur 0 loss if you correctly classify, you incur λr loss (cost) if you choose
the reject option, and you incur λs loss (cost) if you make a substitution error (misclassifica-
tion).

• Show that the minimum risk is obtained if we decide Y = j if p(Y = j|x) ≥ p(Y = k|x)
for all k (i.e., j is the most probable class) and if p(Y = j|x) ≥ 1 − λr

λs
; otherwise we

decide to reject.)

• Describe qualitatively what happens as λr/λs is increased from 0 to 1 (i.e., the relative
cost of rejection increases).
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