Problem 1

Find the derivative of the sigmoid function with respect to \(x \) where the sigmoid function \(\sigma(x) \) is given by,

\[
\sigma(x) = \frac{1}{1 + e^{-x}}
\]

Problem 2

1. When are two vectors \(u \) and \(v \in \mathbb{R}^n \) said to be orthogonal?
2. Are the following vectors orthogonal to each other?

\[
v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
\]

Problem 3

Consider the following Bayesian Network containing four Boolean random variables.

![Bayesian Network Diagram]

1. Compute \(P(A|C) \)
2. Compute \(P(\neg A, B, \neg C, D) \)

Problem 4

In order to get an unbiased estimate of how well your ML algorithm is doing. A typical split is 60/20/20 split in terms of 60% train, 20% test and 20% validation. And several years ago this was widely considered best practice in machine learning. Do you still agree such ratios in the modern big data era? Why or why not?
Problem 5

Suppose you’re training a neural network in an unusual, nondeterministic domain: The training set consists of \(N \) copies of the same example, a fraction \(p > 0.5 \) of which are positive and a fraction \(1 - p \) of which are negative. Suppose we decide we want to optimize the absolute error function

\[
E = \sum_{i=1}^{N} |T_i - O|
\]

where \(T_i \) is the correct value for example \(i \) and \(O \) is the network’s output for this example. Suppose that \(O \) must also be in the range \([0,1]\). By writing out an expression for the error in terms of \(O \), find the value of \(O \) that minimizes the error.