Problem 1

Find the derivative of the sigmoid function with respect to x where the sigmoid function $\sigma(x)$ is given by,

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

Problem 2

1. When are two vectors \mathbf{u} and $\mathbf{v} \in \mathbb{R}^{n}$ said to be orthogonal ?
2. Are the following vectors orthogonal to each other?

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Problem 3

Consider the following Bayesian Network containing four Boolean random variables.

1. Compute $\mathrm{P}(A \mid C)$
2. Compute $\mathrm{P}(\neg A, B, \neg C, D)$

Problem 4

In order to get an unbiased estimate of how well your ML algorithm is doing. A typical split is $60 / 20 / 20$ split in terms of 60% train, 20% test and 20% validation. And several years ago this was widely considered best practice in machine learning. Do you still agree such ratios in the modern big data era? Why or why not?

Problem 5

Suppose you're training a neural network in an unusual, nondeterminstic domain: The training set consists of N copies of the same example, a fraction $p>0.5$ of which are positive and a fraction $1-p$ of which are negative. Suppose we decide we want to optimize the absolute error function

$$
E=\sum_{i=1}^{N}\left|T_{i}-O\right|
$$

where T_{i} is the correct value for example i and O is the network's output for this example. Suppose that O must also be in the range $[0,1]$. By writing out an expression for the error in terms of O, find the value of O that minimizes the error.

