
Final Exam Name:
Apr 14, 2020 Student ID:
CMPT 727: 2020 Spring
Instructor: Maxwell Libbrecht

Instructions:
Take home exam. Electronic media limited to Wikipedia, published textbooks and calculator app.
Any physical media is allowed.
Please answer the questions below. Show all your work.

Problem 1. (9 pts) Short answer

1. (3 pts) Order the following KL divergence values from smallest (most similar) to largest (most
dissimilar).

• p(X) = N(0, 1).

• q(x) = Uniform(−1, 1).
• r(x) = (1/Z)exp(x2) where Z is chosen such that

∫
r(x)dx = 1.

(a) KL(p‖q)
(b) KL(q‖p)
(c) KL(p‖r)

2. (3 pts) You are developing a model (θ) for diagnosing whether or not a patient has cancer (Y )
based on a panel of tests (X). You have a training set (D) of N patients for which you know
both X and Y . (Unless stated otherwise, assume our prior distribution P (θ) is reasonable.)
You are considering three potential strategies:

(1) Use the training set to choose the maximum likelihood estimate θMLE = argmaxθP (D|θ)
and diagnose new patients according P (Y |X, θMLE).

(2) Use the training set to choose the maximum a posteriori estimate θMAP = argmaxθP (θ|D)
and diagnose new patients according P (Y |X, θMAP ).

(3) Diagnose new patients according to the posterior predictive distribution P (Y |X,D) =∫
θ P (Y, θ|X,D).

For each of the following statements, list ALL strategies (1, 2 and/or 3) for which the state-
ment is true, or “none” if all are false.

(a) A poor choice of prior P (θ) may lead to unexpected poor results.

(b) For very large N , a smart choice of prior could lead to significantly better results.

(c) For small N , we might overfit, giving a confident incorrect answer on a new patient.



3. (3 pts) For each pair of models below, indicate which one allows for more efficient exact
inference. Assume the parameters of the models are known. (Circle a or b.)

i. (a) Naive Bayes-like model where the hidden variable depends on the observed vari-
ables. (b) Naive Bayes-like model where the observed variables depend on the hidden
variable.

ii. (a) Ising model. (b) Hidden Markov model.

iii. Latent representation model with (a) 2 hidden variables with cardinality of 100 each, or
(b) 100 hidden variables with cardinality of 2 each.



Problem 2. (16 pts) Classification with naive Bayes
Consider the Naive Bayes model with class variable C = {1, 2, 3} and discrete binary evidence

variables X = {X1, X2, X3, X4}, where each Xi ∈ {−1,+1}. The CPDs for the model are param-
eterized by P (C = c) = πc and P (Xi = +1|C = c) = θic.

In addition, we assume that our training data consists of the following:

• X(1) =< +1,+1,−1,−1 >, Class = 1

• X(2) =< −1,+1,−1,−1 >, Class = 3

• X(3) =< +1,−1,−1,−1 >, Class = 1

• X(4) =< +1,+1,+1,−1 >, Class = 2

• X(5) =< +1,+1,−1,+1 >, Class = 3

(a) (5 pts) Calculate the MLE for parameters π1 and θi1 for all i ∈ {1, .., 4}

(b) (8 pts) Suppose the data set is NOT labeled with classes. We can still estimate the parameters
using the EM algorithm. We use θt to represent all parameters at iteration t. Show the first
iteration of EM with uniform initialization θ0 = {π0c = 1

3 and θ0ic =
1
2 .}. That is, calculate π1c

and θ1ic.

(c) (3 pts) Based on your results, why is using a uniform initialization for EM a bad idea?



Problem 3. (20 pts)
In this question, we will be considering a Ising Model with 4 hidden variables, as shown in the

following figure.

Recall that in an Ising model, the variables can take on only the values {−1,+1}. Suppose we
observe that X1 = X2 = X3 = −1 and X4 = +1.

(a) (8 pts) The factor over every adjacent pairs of Yi’s is: ψij(yi, yj) = exp(yiyj), i.e., ψij =(
e e−1

e−1 e

)
and the evidence factor is ψi(yi) = exp(xiyi). Calculate the posterior belief on

Y4 after one iteration of loopy belief propagation. You do not need to normalize your final
result.



(b) (8 pts) We’d like to try mean field inference this time. The initial µi’s are as follows: µ1 =
µ2 = µ3 = −0.245 and µ4 = 0.245. After one round of mean field inference, what are the
updated values for µ1 and µ4? (Assume all values are updated in parallel, and that we use
undamped updates.)

(c) (6 pts) Suppose we want to use the Metropolis Hastings Algorithm to sample from this Ising
Model. We use a transition function that samples all hidden variables uniformly at random.
Our initial sample is: y1 = y2 = +1 and y3 = y4 = −1.

Which of the following proposed transitions are guaranteed to be accepted? (Circle all that
apply.)

(a) y1 = y2 = y4 = +1 and y3 = −1
(b) y1 = y2 = y3 = y4 = −1
(c) y1 = y2 = y3 = +1 and y4 = −1
(d) y1 = +1 and y2 = y3 = y4 = −1



Problem 4. (8 pts) Given a probability distribution : p(x) = (1/Z)x for x ∈ [0, 1].

(a) (4 pts) Determine the value for Z.

(b) (4 pts) Show how to use the inverse CDF method to produce samples from p(x). You can
assume that you have access to the random() function, which produces values from Uni-
form(0,1).



Problem 5. (8 pts)

(a) (4 pts) Convert the BN above to MRF.

(b) (4 pts) Fill in the blanks to make a true statement: and are d-separated
given in the BN, but not d-separated in the MRF.


