Chapter 6: Frequentist statistics

Bayesian interpretation: Probabilities represent my
uncertainty about the world.

Frequentist interpretation: Probabilities represent
frequencies of real random outcomes. Properties of
the world (6) are fixed, so they are not random

variables.



Me explaining p-value to anyone at all:




p-value

pvalue(D) = p(f(D) > f(D|D ~ Hy)



Confidence interval

Confidence interval:
(0,u) : PU(D) <8 <uD)D~0)=1-a



Problem 5 (Textbook exercise 3.6): MLE for the Poisson
distribution.

The Poisson distribution pmf is defined as
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Poi(z|\) = e

for x € {0,1,2,...} where A > 0 is the rate parameter. Derive the MLE.



Problem 9 (Textbook exercise 3.20): Comparing naive
Bayes with full conditional model

Consider a generative classifier for C' classes with class conditional density p(x|y) and uniform
class prior p(y). Suppose all the D features are binary z; € {0,1}. If we assume all the
features are conditionally independent (the naive Bayes assumption), we can write

D
p(xly = ¢) = | | Ber(;(6;:0

J=1

This requires DC' parameters.

1. Now consider a different model, which we will call the “full” model, in which all the
features are fully dependent (i.e. we make no factorization assumptions). How might
we represent p(x|y = ¢) in this case? How many parameters are needed to represent

p(xly = ¢)?

2. Suppose we train each model by finding the MLE on a training set of N cases. If the
sample size N is very small, which model (naive Bayes or full) is likely to give lower
test set error, and why?

3. If the sample size N is very large, which model is likely to give lower test set error, and
why?

4. What is the computational complexity (in big-Oh notation) of fitting the full and naive
Bayes models respectively as a function of N and D? (You may assume you can convert
a D-bit array to an array index in O(D) time.)

5. What is the computational complexity of applying the full and native Bayes models
respectively at test time to a single test case?

6. Suppose the test case has missing data. Let x, be the visible features of size v and let x,,
be the hidden (missing) features of size h, where v+h = D. What is the computational
complexity of computing p(y|x., 0 for the full and naive bayes models, as a function of
v and h?



Problem 7 (Textbook exercise 3.12): MAP estimation
for Bernoulli with non-conjugate priors

Suppose we flip a coin N times and observe N, tails and N; heads. Consider the following
prior that believes the coin is either fair or slightly biased towards tails.

(05 if0=0.5
p(0) =<05 ifd=04

\ 0 otherwise

1. Derive the MAP estimate under this prior.

2. Suppose the true parameter is § = 0.41. When N is small, will this prior or a Beta(1, 1)
prior lead to a MAP estimate that is closer to the true 87 What about when N is large?



Problem 8 (Textbook exercise 3.21). Feature selection
using a naive Bayes classifier with binary features.

One way to select features for a naive Bayes classifier is to use mutual information between
each feature X, and the class label Y:

;)
ZZP gylg(l)()

Let 7. = p(y = ¢), 0;c = p(x; = lly = ¢) and 0; = p(x; = 1) = > 7 .. Show that the MI
can be computed as follows

0. 1 — 0,
[(X]Y) = Z |:9jc7rc logf + (1 o HJC)WC log 1 — 930
c J ’



Chapter 5: Model selection and making
predictions



Utility and loss

Utility: The "goodness" of a decision.



Exercise

Suppose we estimate the posterior probability of a
coin's heads frequency as p(6/D). We need to choose a
predicted value of 8, and our loss from this decision will
be

(0" —0)?

What value of 8 should we predict?



Posterior mean, median and mode



Credible interval

P(6ID)

Co(D)=(l,u): PUL<O<uD)=1-«



True Positive Rate

False positive/false negative tradeofft
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How do you handle ties in prediction
probability scores?

Prediction sets

A B C D

Positive
predictions
> Examples >




Interpolation in an ROC curve forms a
straight line

A+B/2

Recall

False positive rate



Interpolation in an PR curve forms convex
curve

A+B/2

Precision

Recall



Bayesian model selection
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Bayesian Occam's razor

"Complexity" of D



Bayesian Occam's razor
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Problem 5 (Textbook exercise 3.12): MAP estimation
for Bernoulli with non-conjugate priors

Suppose we flip a coin NV times and observe N tails and N; heads. Consider the following
prior that believes the coin is either fair or slightly biased towards tails.

0.5 if6=0.5
p(0) =05 ifd=0.4

0 otherwise

1. Derive the MAP estimate under this prior.

2. Suppose the true parameter is # = 0.41. When N is small, will this prior or a Beta(1, 1)
prior lead to a MAP estimate that is closer to the true 87 What about when /N is large?



Exercise

Suppose we are performing a classification problem
where we must predict y € {1,....C}. We have a "reject"
option (C+1), where we may refuse to predict any
class. We incur the following loss:

0 ifi=jandi,je{l,...,C}
Ay if i =C+1

As otherwise

Ly =j,a=1) =

Given a posterior distribution for y, what action should
we choose?



Reject option

1.0
threshold

0.0

Reject
Region



