Review exercises



Exercise

We are interested in modeling the financial performance of companies
across sectors. Each company's stock will either rise or fall in value in the
next quarter. Each company has a particular sector 17...K (agriculture,
health, energy, etc). We observe M binary public attributes of each
company (sales increasing/decreasing, public/private, etc).

We will use a naive-Bayes-like model which imagines that the public
attributes depend on both stock and sector, and that assumes that the
attributes are independent of one another given stock and sector.

Draw a BN, MRF and factor graph that represent this model. Use plate
notation. Propose a way to parameterize each distribution, and propose
reasonable priors for each.
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Exercise

Assume stock and sector (and attributes) are observed for N companies.
Derive the posterior distribution for all parameters.
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Exercise

Now we will assume that we never observe the stock or sector. We will
build an unsupervised model. Of course, our learned clusters may or may
not correspond to the known types.

Show how to use EM to learn the model parameters.



Now we will assume that we never observe the stock or sector. We will build an unsupervised model. Of course, our learned clusters may or may not
correspond to the known types.

Show how to use EM to learn the model parameters.



Hint 1: Linearity of expectation
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Hint 3: EM for a mixture model
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Exercise

1) Describe how to use Gibbs sampling for inference in this model. Derive
the update probabilities.

2) Suppose we use the Metropolis-Hastings for inference, using a
transition that chooses both Rjand S; (simultaneously) uniformly at
random. Derive the acceptance probability of this transition.

pr(x)g(x|x") _ p*(x)/q(x'[x)
pr(x)q(x'lx)  p*(x)/q(x[x’)




1) Describe how to use Gibbs sampling for inference in this model. Derive the update probabilities.

2) Suppose we use the Metropolis-Hastings for inference, using a transition that chooses both R;and S; (simultaneously) uniformly at random. Derive
the acceptance probability of this transition.




Exercise

Consider the following model with binary variables A, B and C. Compute a
mean field update for B in the following model for iteration t+1.

0.9 0.1
YaB=1VB0 = 0.1 0.9

g4 (0) =1/4
qp(0) = 2/3



Consider the following model with binary variables A, B and C. Compute a mean field update for B in the following model for iteration t+17.
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Exercise

Consider the probability distribution

1

p(x) = EGXP(—CL‘)

1) Determine the value of the normalization constant Z.

2) Show how to use the inverse CDF method to sample x from this
distribution.
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2)  Show how to use the inverse CDF method to sample x from this distribution.



Statistical machine learning









