Chapter 23: Sampling and Monte Carlo
inference



When you interview a data scientist...

WOLW | YOU ANSWERED WELL, T MET WITH EVERY
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Sampling using the inverse CDF




Rejection sampling

M = max p(x)

x ~ U(0, D)
u~ U(0,1)

p(x)

A t it — ~
ccept if u < VD



Rejection sampling
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u ~ U(0,1)

x ~ q
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Accept if u <



Rejection sampling for multivariate
distributions



Sampling from a Bayesian network



Importance weighting



Inference using sampling



Exercise

Propose a way to sample from a Beta(2,2) distribution.

Propose a way to sample the label from a NB model
where the features (and parameters) are observed.



Exercise

Given only a fair coin, sample from a weighted coin
with 1/3 probability of heads.



Chapter 24: Gibbs sampling and Markov
chain Monte Carlo (MCMC)



Gibbs sampling



Burn-in
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Gibbs sampling for the Ising model

X11 — X2 X141 — X5 s€nbr(t)

X6 — X17 — X8 — X9 — Xog



Metropolis Hastings algorithm




Proposal distribution and accept probability



Hastings correction for assymetric proposal
distributions

_ r)ax) () a(x %)

pr(x)q(x'|x)  p*(x)/q(x|x')




Gibbs sampling is a special case of MH
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Proposal distributions



Proposal distributions

MH with N(0,1.000%) proposal MH with N(0,500.000%) proposal
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Burn-in
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Diagnosing convergence In practice



Annealing algorithms



Exercise

Suppose x; € {—1,+1}
and o(xs, ) = exp(Jxsxy)

Derive an expression for p(x;|z_;)

Xl _XQ X4 —X5

X10
p(xe|x_¢,0) H Vst (Ts, Tt)
Xll — X9 X4 — X15 s€Enbr(t)
| | | |

X6 — X7 — Xig — X9 — Xog



Exercise

Show how to apply Gibbs sampling to a univariate
mixture of Gaussians.



