Leveraging Adversarial training for Monocular Depth Estimation

|. Introduction V. Results

Estimating depth from 2D 1mages 1s a crucial step in many applications such as scene
reconstruction, 3D object recognition, segmentation, and detection. The problem can be
framed as: given a single RGB 1mage as input, predict a depth map for each pixel.

Most Existing methods:

-suffer from loss of spatial resolution in the estimated depth maps

-have distorted and blurry reconstruction of object boundaries

We use the NYU-Depth V2 dataset. The
dataset consists of a variety of indoor
scenes from which we wused 50K
samples for the training phase and 1K
samples for testing. The data

augmentation 1s 1dentical to the baseline

lI. Contribution method: Flip, Rotation and Color Jitter

Hu et al.
(Baseline) were applied to each pair 1n the dataset.
. . Due to the time limit, trained
We extend the baseline method of Hu et al. (2018)[1] by adding a discriminator network and He 10 Ak e T, WE EIned Ot
. . . L. . . . network 5 epochs instead of 20 epochs
introducing two new loss functions. The discriminator network (D) 1s trained using ground .
= that the baseline method used. We also,
truth depth maps from the dataset and reconstructed depth maps from the depth estimation . .
... . trained the baseline network for 35
module (generator). The discriminator forces the depth estimator to generate depth maps that ——— . .
. epochs to perform a fair comparison
are more similar to the real depth maps. . :
L between results. The 1nitial learning rate
Also, we added an error term to compare the structural similarity of the reconstructed depth . . 0
. . | | | | 1s 0.0001, and reduce 1t to 10% for
map and ground truth depth. Another error term 1s added to penalize the depth error on nearby Figure 2. Visual comparison of estimated depth maps . .
. . . every epoch after the second iteration.
objects depth more than distant objects.
Our experimental results show the effect of using different combinations of these i1deas on the
accuracy of the network.
lll. Method
- Architecture
Given an mnput 1mage, the encoder extracts multi-scale features. The decoder converts the last
1/32 scale feature to get a 1/2 scale feature. Each of the multi-scale features 1s up-scaled to 1/2 Ground
scale and fused by the multi-scale feature fusion module (MFF). The outputs of D and MFF Truth

and are refined by the refinement module (R) to obtain the final depth map. Each box named
“blockn” denotes a block of multiple convolutional layers, such as residual block of ResNet;
each box named “upn” denotes an up-projection layer.

Hu et al. "
(Baseline)

- Discriminative Network

A discriminator network is added

to differentiate between fake and
real depth maps. The depth map
generator tries to fool the
discriminator with generated depth
maps while the discriminator 1s fed
with the ground truth depth maps
learns to distinguish fake depth
maps from the real ones.
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Figure 3. Example comparison of estimated depth maps

Penalize error around distorted or blurry edges :

It stands to reason that the error function should be

Accordingly, the adversarial loss , _ ,
Error (lower is better) Accuracy (higher is better)
would force the depth map Method
| : generator to produce outputs that ms rel | loglo |§ <1.25 |6 < 1.25%|6 < 1.253
| | follow the natural distribution of
: i the depth maps 1n the data set. Hu et al. (Baseline) [1] 0.530 0.115 0.050 0.866 0.975 0.993
I
| ' o
: i (Ours) Baseline+adversarial 0.527 | 0.117 | 0.050 0.866 0.974 0.994
I
| I
: i (Ours)Baseline+adversarial+SSIM 0.537 | 0.117 | 0.051 0.860 0.972 0.993
I
| I
: Encoder | i (Ours) Baseline(Depth Priority)+adversarial 0.538 | 0.121 | 0.052 0.854 0.971 0.990
Decoder : I
- | i (Ours) Baseline(DBE)+adverserial+SSIM 0.537 | 0.117 | 0.051 0.860 0.972 0.993
eature rusion | Fake or
| I
() Refinement ! i Real? (Ours) Baseline(DBE)+adverserial 0.553 | 0.123 | 0.053 0.848 0.968 0.992
I
. | |
B oiscriminacer ' (Ours) Baseline+SSIM 0.535 | 0.117 | 0.051 0.862 0.974 0.993
_ _ _ Eigen et al. [4] 0.907 | 0.215 - 0.611 0.887 0.971
Figure 1. A diagram of the proposed network architecture
Xu et al. [5] 0.586 | 0.121 | 0.052 0.811 0.954 0.987
- LOSS FunCtlonS Xu et al. [6] 0.593 | 0.125 | 0.057 0.806 0.952 0.986
Fu et al. [7] 0.509 | 0.115 | 0.051 0.828 0.965 0.992
— l l l l Qi et al. [8] 0.569 | 0.128 | 0.057 0.834 0.960 0.990
L normal T grad T dept h T lssim
Lei et al. [9] 0.821 | 0.232 | 0.094 0.621 0.886 0.968

Penalize small structural errors such as those of high
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perceptually motivated : n

Sensitive to changes in the depth direction but
insensitive to changes in x and y direction:
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Table 1. Comparison of different methods on the NYU-Depth V2.

V. Conclusion

This work has sought to investigate the impact of exploiting adversarial loss
and different complementary loss functions on estimating depth from a single
image. Our experiments confirm that adding a discriminator network can be
beneficial for depth estimation as shown by our quantitative and qualitative
results. Our results also reveal that no significant improvement in the depth
map accuracy 1s observed when using the structural similarity loss. We can
conclude that when other restricted constraints such as gradient loss on edges
and surface normal loss are involved, the SSIM loss contributes hardly to the
quality of the predicted depth map.




