
Leveraging Adversarial training for Monocular Depth Estimation

Estimating depth from 2D images is a crucial step in many applications such as scene

reconstruction, 3D object recognition, segmentation, and detection. The problem can be

framed as: given a single RGB image as input, predict a depth map for each pixel.

Most Existing methods:

-suffer from loss of spatial resolution in the estimated depth maps

-have distorted and blurry reconstruction of object boundaries

I. Introduction

We extend the baseline method of Hu et al. (2018)[1] by adding a discriminator network and

introducing two new loss functions. The discriminator network (D) is trained using ground

truth depth maps from the dataset and reconstructed depth maps from the depth estimation

module (generator). The discriminator forces the depth estimator to generate depth maps that

are more similar to the real depth maps.

Also, we added an error term to compare the structural similarity of the reconstructed depth

map and ground truth depth. Another error term is added to penalize the depth error on nearby

objects depth more than distant objects.

Our experimental results show the effect of using different combinations of these ideas on the

accuracy of the network.

II. Contribution

III. Method

IV. Results

We use the NYU-Depth V2 dataset. The

dataset consists of a variety of indoor

scenes from which we used 50K

samples for the training phase and 1K

samples for testing. The data

augmentation is identical to the baseline

method: Flip, Rotation and Color Jitter

were applied to each pair in the dataset.

Due to the time limit, we trained our

network 5 epochs instead of 20 epochs

that the baseline method used. We also,

trained the baseline network for 5

epochs to perform a fair comparison

between results. The initial learning rate

is 0.0001, and reduce it to 10% for

every epoch after the second iteration.

- Discriminative Network

A discriminator network is added

to differentiate between fake and

real depth maps. The depth map

generator tries to fool the

discriminator with generated depth

maps while the discriminator is fed

with the ground truth depth maps

learns to distinguish fake depth

maps from the real ones.

Accordingly, the adversarial loss

would force the depth map

generator to produce outputs that

follow the natural distribution of

the depth maps in the data set.

- Loss Functions
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Figure 2. Visual comparison of estimated depth maps

Figure 3. Example comparison of estimated depth maps

Figure 1. A diagram of the proposed network architecture

Penalize error around distorted or blurry edges : 

Penalize small structural errors such as those of high 

frequency undulation of a surface: 

It stands to reason that the error function should be 

perceptually motivated :

Sensitive to changes in the depth direction but 

insensitive to changes in x and y direction:
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Table 1. Comparison of different methods on the NYU-Depth V2.

This work has sought to investigate the impact of exploiting adversarial loss

and different complementary loss functions on estimating depth from a single

image. Our experiments confirm that adding a discriminator network can be

beneficial for depth estimation as shown by our quantitative and qualitative

results. Our results also reveal that no significant improvement in the depth

map accuracy is observed when using the structural similarity loss. We can

conclude that when other restricted constraints such as gradient loss on edges

and surface normal loss are involved, the SSIM loss contributes hardly to the

quality of the predicted depth map.

V. Conclusion

rms rel log10

Hu et al. (Baseline) [1] 0.530 0.115 0.050 0.866 0.975 0.993

 (Ours) Baseline+adversarial 0.527 0.117 0.050 0.866 0.974 0.994

  (Ours)Baseline+adversarial+SSIM 0.537 0.117 0.051 0.860 0.972 0.993

 (Ours) Baseline(Depth Priority)+adversarial 0.538 0.121 0.052 0.854 0.971 0.990

 (Ours) Baseline(DBE)+adverserial+SSIM 0.537 0.117 0.051 0.860 0.972 0.993

 (Ours) Baseline(DBE)+adverserial 0.553 0.123 0.053 0.848 0.968 0.992

 (Ours) Baseline+SSIM 0.535 0.117 0.051 0.862 0.974 0.993

Eigen et al. [4] 0.907 0.215 - 0.611 0.887 0.971

Xu et al. [5] 0.586 0.121 0.052 0.811 0.954 0.987

Xu et al. [6] 0.593 0.125 0.057 0.806 0.952 0.986

Fu et al. [7] 0.509 0.115 0.051 0.828 0.965 0.992

Qi et al. [8] 0.569 0.128 0.057 0.834 0.960 0.990

Lei et al. [9] 0.821 0.232 0.094 0.621 0.886 0.968

Method

Error (lower is better) Accuracy (higher is better)
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- Architecture

Given an input image, the encoder extracts multi-scale features. The decoder converts the last

1/32 scale feature to get a 1/2 scale feature. Each of the multi-scale features is up-scaled to 1/2

scale and fused by the multi-scale feature fusion module (MFF). The outputs of D and MFF

and are refined by the refinement module (R) to obtain the final depth map. Each box named

“blockn” denotes a block of multiple convolutional layers, such as residual block of ResNet;

each box named “upn” denotes an up-projection layer.


