Movement Prediction of Three Bouncing Balls

Abstract

Recurrent neural network(RNN) has been widely used in the processing of se-
quential data, including tasks like video prediction and natural language process-
ing. Specifically, ConvLSTM model[1] is powerful in learning image sequential
information. However, training such models requires a high computational cost in
terms of time and space. To address this challenge, we extend the classic convo-
lutional neural network(CNN) with two additional layers called "tendency layer”,
which captures the differences between two consecutive image frames, and at-
tention layer”, which learns to focus on the most relevant input frame. We eval-
uate our methods on two datasets, three bouncing balls and Weizmann human
action[29], observe that our models generate comparative results as RNN model
like ConvLSTM but with substantial improvement in training efficiency.

1 Introduction

The prediction task has recently been well studied by using RNN models. For instance, ConvLSTM,
an LSTM-based model that has the ability to learn the spatial and temporal features simultaneously,
is a natural fit in such a task. However, due to the underlying structure of LSTM, it usually requires a
huge amount of time to train the model and is difficult to parallelize this process. On the other hand,
the convolutional neural network can capture visual imagery with spatial information and have high
training efficiency. Is it possible for CNN to represent the time-series data and tackle the task of
image sequence prediction?

The main difficulty for CNN to learn the temporal data is that traditional CNN models only focus
on interpreting a single image, instead of finding potential relationships between multiple inputs.
Another problem is that even the model is able to learn the sequential information, we need to know
which part of previous information is useful. For example, in the prediction of ball movement, a
collision will change where the ball is moving to. Such important events have a great impact on the
future, and our model should be able to distinguish those frames when those events happen.

In order to overcome these obstacles, we add two new layers to the traditional CNN models. The
advantages of our design are that our model can utilize the difference between frames and assign
importance weights on different parts of inputs, which to some extent capture the temporal infor-
mation. Besides, we also improved the basic structure of ConvLSTM to fit it on image sequence
prediction task both at input and output for performance comparison with our proposed new CNN
model. We evaluated our method on the bouncing ball and a real-life human action dataset. The
result demonstrates that our proposed CNN model obtains a comparable result to the ConvLSTM
model while we also see a substantial improvement on the training efficiency.
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2 Related Work

2.1 Video frame prediction

In the context of video frame prediction task, it has been shown that it is possible to use high-level
embeddings to anticipate future actions up to one second before they begin [1]. Predicting the future
event by retrieving similar videos and transferring this information, is proposed in [2]. In [3] a
hierarchical representation is used for predicting future actions. Predicting a future activity based
on analyzing object trajectories is proposed in [4]. Anticipating future movement in the spatial
domain, as close as possible to the real movement, has also been previously considered. Here,
the methods start from an input image at the current timestamp and predict motion optical flow or
motion trajectories at the next frame of a video. In [5] images are aligned to their nearest neighbor in
a database and the motion prediction is obtained by transferring the motion from the nearest neighbor
to the input image. In [6], structured random forests are used to predict optical flow vectors at the
next time stamp. In [7], the use of LSTM (Long Short-Term Memory Networks) is advised towards
predicting Eulerian future motion. A custom deep convolutional neural network is proposed in [8]
towards future optical flow prediction.

2.2 Sequential model

Recent advances in deep learning, especially recurrent neural network (RNN) and long short-term
memory (LSTM) models [10, 11, 12, 13, 14, 15, 16, 17], provide some useful insights on how
to solve the sequence prediction problem. The pioneering LSTM encoder-decoder framework pro-
posed in [14] provides a general framework for sequence-to-sequence learning problems by training
temporally concatenated LSTMs, one for the input sequence and another for the output sequence.
In [16], it is shown that prediction of the next video frame and interpolation of intermediate frames
can be done by building an RNN based language model on the visual words obtained by quantizing
the image patches. They propose a recurrent convolutional neural network to model the spatial rela-
tionships but the model only predicts one frame ahead and the size of the convolutional kernel used
for state-to-state transition is restricted to 1. Their work is followed up later in [17] which points
out the importance of multi-step prediction in learning useful representations. They build an LSTM
encoder-decoder predictor model which reconstructs the input sequence and predicts the future se-
quence simultaneously. Combining the most successful neural network paradigms for image data
(CNN) and sequence modeling (LSTMs) to exploit spatiotemporal relations has led to fruitful appli-
cations of the above ideas to a variety of tasks. [18] propose a LSTM with convolutional(ConvLstm)
instead of linear interactions and demonstrate good performance on predicting precipitation based
on radar echo images.

2.3 Convolutional neural network

Renaissance of deep neural network remarkably accelerates the progress in image-related tasks.
Convolutional Neural Networks (CNN) [19] can learn powerful features from large-scale image
datasets, which greatly alleviates the difficulty of designing hand-crafted features. Extensive exper-
iments have demonstrated that CNN can achieve superior performance in various image and video
classification tasks, e.g. ImageNet object classification [20], face recognition [21]. These successes
inspire researchers to extend CNN for video classification tasks [22, 23, 24]. Karpathy et al. [22]
proposed several convolutional neural network (CNN) architectures based on stacked RGB images
for video classification. They designed several fusion strategies for RGB flows to utilize temporal
information in stacked RGB frames. [24] modeled temporal information by designing a 3D fil-
ter to directly learn feature from videos. Simonyan and Zisserman [23] proposed the two-stream
architecture which exploits two CNN to model RGB and optical flow respectively. Unlike these
video classification task, we want to illustrate if there are any possibilities to utilize CNN structure
to represent temporal information in video frames and predict next frames based on some earlier
frames.



3 Methodology

3.1 Model Structure

We’ve tried three different models, one of them is based on ConvLSTM, and the other two of them
are based on simple CNN structure (LeNet). The three model structures are described as follows:

(1) Time-Series CNN

We first build a Simple CNN Encoder-decoder model for high-dimensional sequential inputs and
outputs. Then to help CNN better learn from the time-series data, 2 hand-designed layers, Movement
Tendency Layer and Attention Layer, are combined into the encoder. CNN has great performance
on extracting features from pictures. Here we fine-tuned LeNet-5[27] as our encoder. As its known,
LeNet-5 is designed for the classification task, so the output is only 10 nodes. Therefore, we add
fully connected layers as our decoders and the number of output nodes is adjustable based on the
number of output frames wanted. Movement Tendency Layer is computed by subtracting former
layers from latter layers. In the Movement Tendency Layer, the non-trivial background is removed,
and the remainder are significant movement trend of the object. The movement tendency information
is feed into CNN and combined into our encoder. Inspired by Transformer [28] model, we design an
attention mechanism for the input frames by adding learnable weights on each input frames. Those
weights are implemented by depth-wise convolution filters, which also extract features at the same
time and save the number of parameters.
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Figure 1: Time-Series CNN model structure

(2) Difference CNN Encoder-Decoder

For the time-series CNN encoder-decoder model, we noticed that it was not easily adapted to this
new dataset. Instead of inheriting the same structure of that model, we decided to propose a new
design specifically for this dataset, which is based on the same idea as before but has a different ar-
chitecture, named as Difference CNN Encoder-Decoder Model(Figure 1). Unlike our simple CNN
encoder-decoder model or works of Long et al. [26] and Haitam Ben Yahia[25], we do not feed
a sequence of frames as channel into the encoder, instead, we compute the difference of each in-
put frame and its next frame, and use those difference images as inputs. We also have a detector
structure, where we feed in the last frame of the input sequence. The detector part is a LeNet-based
CNN and its output is also an encoding vector but has a much larger size, for example, 600*1 for
the detector and 200*1 for the encoder.
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Figure 2: Difference CNN Encoder-Decoder model structure

(3) Stacked Conv-Deconv-LSTM

In the Stacked Conv-Deconv-LSTM, we keep the basic LSTM cell and the convolutional encoders
for input images at different time scale. In addition, we refer to the idea of "FCN”[29], a famous
neural network for image segmentation task and add the deconvolutional layer to proceed the output
of LSTM cell. These deconvolutional layers can make the final output same size with the original
input by setting appropriate filter parameters, which make it easier to compare the difference be-
tween ground truth and our prediction. Besides, we also refer to the idea of ’Stacked LSTM”’[30] to
build a deep LSTM by stacking multiple recurrent hidden states on top of each other. This approach
potentially allows the hidden state at each level to operate at different timescale.
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Figure 3: Stacked Conv-Deconv-LSTM

3.2 Dataset

We test our models on two different datasets. The first one is the bouncing ball dataset, which is a
common test set for models that generate high dimensional sequences. It consists of simulations of
three balls bouncing in a box. We followed the standard procedure to create 15000 training samples
and 5000 testing samples. Our networks were trained with 5 frames as input, and output 1 and 3
predicted frames respectively. Training with MSE was very effective for this dataset. In order to test
the universality of our models, we experimented our models on the Weizmann human action dataset.
Each video has a noisy but stable background (the wall and the window) with moving objects (the
human), therefore it is desirable to serve as a probe for testing the ability to capture the motions.
Each sample is composed of 5 consecutive frames of one video and the following 1, 3, 5 frames
used as our prediction targets. In total, there are 3961 samples. We divide the dataset into two parts,
with 3600 samples as training data and the rest as testing data.



3.3 Metrics

(1) Mean Square Error (MSE) Mean Square Error describes the global similarity of the prediction
and ground truth. We also adopt it as the loss function for its high efficiency on training. Lower is
better.

n

1
MSE = — i —ti)?
S ”;:1(% t;)

(2) Peak Signal-to-Noise Ratio (PSNR) Peak signal-to-noise ratio(PSNR) is the ratio between the
maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its
representation[6]. The PSNR value can be easily computed given MSE:
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(3) Structural Similarity Index (SSIM) SSIM is another way to measure the similarity of two pic-
tures. Higher is better. SSIM is designed to improve on traditional methods such as PSNR and
MSE. It can be considered as a good supplementary evaluation metric for measuring the quality of
predictions.

4 Experiment

4.1 Evaluation on bouncing ball dataset

We use 15000 samples to train each model and 5000 samples to test. For every model, we input 5
sequential frames, and let the model predict the following 1 or 3 frames.
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Figure 4: One frame prediction on two different inputs

Method/Metrics MSE PSNR SSIM
Simple CNN 157.55 28.08 0.42
Time-series CNN 154.59 29.49 0.43
Stacked Conv-LSTM 169.27 27.60 0.38

Table 1: Metrics for 1 frame prediction

Both Simple CNN Encoder-Decoder and Time-series CNN performs well on 1-frame prediction.
The MSE, PSNR and SSIM are almost the same for these two models.

According to the pictures, Time-Series CNN has better prediction with respect to the balls, while
Simple CNN Encoder-Decoder predicts clearer background.
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Figure 5: Three frames prediction on two different inputs

Method/Metrics MSE PSNR SSIM
Simple CNN 866.58 19.61 0.33
Time-series CNN 842.16 21.39 0.37
Stacked Conv-LSTM 298.24 35.55 0.41

Table 2: Metrics for 3 frame prediction

Time-series CNN performs much better than Simple CNN Encoder-Decoder when predicting 3
frames. Stacked Conv-LSTM becomes significantly powerful when predicting 3 frames.

For computational cost, Simple CNN Encoder-decoder Model takes about 20-30 minutes for training
to be finished (200 epochs). Time-series CNN takes about 40-50 minutes for training to be finished
(200 epochs). However, Stacked Conv-Deconv LSTM usually takes more than 2 hours finishing the
training process with a good performance (200 epochs). The CNN-based model has great advantages
on training efficiency over LSTM-based model.

4.2 Evaluation on human action dataset

We first experimented our models to predict one frame given 5 input frames. Table 1 shows that
a comparison of the prediction quality of three measurement metrics. CNN CN-DE denotes our
Simple CNN encoder-decoder model, Diff CNN EN-DE is the Difference CNN Encoder-Decoder
model that we designed for this task. Baseline takes the last frame of inputs as the prediction.
Our Simple Encoder-Decoder model achieves the second low MSE score. Our Difference encoder-
decoder performs badly in all three metrics. Conv-LSTM based model performs badly maybe due
to the hyperparameters are not finetuned in this task.

Method/Metrics MSE PSNR SSIM
Simple CNN 117.3 27.44 0.852
Diff CNN 200.1 25.12 0.786
Stacked Conv-LSTM 325.63 28.24 0.42
Baseline:Last Frame 78.4 29.19 0.951

Table 3: Metrics for 1 frame prediction
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Figure 6: Frame prediction on human action dataset

Some visualization results are shown in figure 6. As you can see from the (a), the result given by
our simple CNN encoder-decoder model seems like an aggregation over previous images, while our
difference CNN encoder-decoder generates a more reasonable result where the outline of the man
is clear and its position is right to the inputs(the running direction). However, since our difference
CNN encoder-decoder model has a bad background prediction, it ends up with a high MSE.

We further experimented our models to predict 3 frames given 5 input frames. In order to pre-
dict 3 frames, we use the last prediction result as input and predict the next one. Table 4 shows
a comparison of the quality of predicting 3 frames between our two methods. Our simple CNN
encoder-decoder model outperforms our Difference CNN model for predicting both 3 frames, in
terms of all three metrics. However, the same problem persists. In Figure 6 (b), our simple CNN
encoder-decoder seems like mixing all input frames together and compute the average. It neither
demonstrates the motions nor outlines the human shape. Our Difference CNN encoder-decoder
model generates a better shape of the human, and demonstrates the tendency to movement, but the
background is not realistic enough. Since the background weighs highly in the computation of all
three metrics, such good property cannot be reflected in numbers.

Method/Metrics MSE PSNR SSIM
Simple CNN 132.3 26.91 0.857
Diff CNN 197.3 25.18 0.761
Stacked Conv-LSTM 377.13 29.92 0.392

Table 4: Metrics for 3 frame prediction

5 Conclusion

From our experiment with different models we proposed, we found that time-series CNN has gen-
erally better result than Simple CNN Encoder-Decoder on sequence prediction. Both CNN-based
model performs well on 1-frame prediction. But Time-series CNN become more powerful when
predicting multi-frames. Stacked Conv-Deconv LSTM has the best result most of time and is
more natural to generate long sequences. Tradeoff has to be made between time and accuracy.
Time-series CNN has much faster training speed while LSTM based model has more accurate
prediction result.
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