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  Abstract   Results

  Conclusions

Moden machine learning is data intensive 
in nature. However, not all applications are 
appropriate enough to supply sufficient 
data. This study compares the performance 
of Generative Adversarial Network 
(GAN) against different dataset by setting 
the number of real input data as a control 

Figure 2: Artificial sample from GAN

The study confirmed the GAN is 
generating meaningful results first. 
Above images show that the synthesized 
images from later iteration (right) are 
improved from earlier iteration (left) 
for MNIST and CIFAR10 accordingly. 
Note that the objects generated on the 
CIFAR10 do improve visually with more 
clearly defined contour separated from 
background rather than a blob of colors. 
However, the details are still lacking for a 
human to classify the objects.

Table 1: Classifier accuracy for MNIST

Our works based on previous research [2]  
achieved higher classifier accuracy, 
especially for fewer samples. We also 
validated the results from Mehta’s work [1] 
in the second column of the table.

variable. In addition, based on the result 
the study trains the generator with feature 
matching. This forces the discriminator 
to learn features of the labeled set which 
match with the features of the generated 
samples, thereby reducing overfitting to 
labeled set. 

The study successfully confirmed the 
efficiency results from Mehta’s research 
while expanded the improvement from 
Dai et al. [2] to the more complicated 
dataset. The information acquired here 
forms a foundation for future study to 
answer a question how much performance 
drop is expected for a specific number 
of data available quantitively. In addition, 
few guideline-temptations are made to 
improve the efficiency when available data 
are insufficient. 

  Objectives
• To classify accuracy loss of the GAN, discriminator particularly, when gradually reduce

the number of real training examples
• To improve the accuracy of the discriminator given the limited amount of data

  Introduction
Since the era Artificial Neural Network 
gains its popularity in machine learning, 
researches have been utilizing the superior 
speed of computers to process the large 
of data following by relative simple 
algorithm. Hoping the machine can be 
“trained” and produce intelligent results. 
However, some questions can not be 
solved by this approach naturally due 
to the limited amount of data can be 

acquired. For example, analysis of world-
famous artworks,  diagnosis of rare lethal 
cancers, restoration of unique historical 
artifacts. Hence, this study analyzed the 
current implementations of GAN [1] with 
the focus of reducing its data-intensive 
requirement [2]. Hopefully, the research can 
set a guideline of how well the GAN react 
to the limited amount of training data and 
propose a few improvements.

The above figure shows the relationship of 
GAN discriminator accuracy vs a number 
of real samples passed to the network. 
Following the same configuration, the 
comparison is also made between different 
datasets and different augmentations. 
The trend shows the accuracy is going 
down while the number of real samples 
is reduced. However, with the help 
of various improvements the study 
introduced, the accuracy significantly 
increased when the number of real 
samples reduced to around 1000. The 
study also discovered that more complex 
dataset, say CIFAR10, is less sensitive 
to the improvement. The reason is that 
with or without the improvement, 
discriminator of the dataset cannot 
reach a threshold to produce results 
good enough. I.e. the synthesized data is 
improving but still too few of them passed 
the discriminator to be considered “real” 
samples. Thus, the later augmentation has 
no data to work on along the pipeline. 

For future study, related problems for 
more complicated dataset should be 
focused. The study also suggests a more 
direct way to measure the performance 
of the generator can help to resolve 
the issues. Currently, the generator 
performance can be reflected by the 
discriminator accuracy. However, the 
discriminator is not a ground truth 
checker and it cannot be applied to more 
general cases.

Figure 3: Benchmarks 

Examples CNN SGAN Ours

1000 0.965 0.964 0.985
100 0.895 0.928 0.980
50 0.859 0.883 0.985
25 0.750 0.802 0.919

  Materials and Methods

A vanilla GAN is constructed based on 
Mehta’s work [1]. It consists of two major 
part: Generator who generates fake 
images based on seeded random noise and 
Discriminator who receive images and 
output 1.) if the image is fake; 2.) what 
class is the image belongs to. The vanilla 
GAN is used for accuracy benchmark 
and comparison against our proposed 
improvements later. 

The study analyzed the MNIST, SVHN, 
and CIFAR10 datasets. For reduced 
sample experiments, each dataset is 
shuffled based on a seeded random 
variable. After normalization, the top 
number of needed samples are acquired 
from the dataset. Later, they are passed to 
default data loader with transformation 
and normalization process to augment the 
samples. 

Instead of the standard convolution 
pipeline, The discriminator network uses a 
series of fully connected layers with linear 
weight normalization, ReLU activation 
and adding seeded random noise in each 
layer of the network. The generator 
network is also a series of fully connected 
networks with softplus activation and 
batch normalization in each layer.

Figure 1: Generative Adversarial Network [1] 

Generator network is trained on 
discriminator loss between the fake 
images produced by the generator and 
un-labeled images used for training. This 
technique is called as feature matching. 
The idea behind feature matching is 
rather simple - similar representations 
have similar statistics. Feature matching 
is an alternative objective that forces the 
generator to produce fake images that in 
the discriminator have representations 
similar to the ones of real images. The 
images generated by this generator are 
unrealistic fake samples around the high-
density region. As per [2], this generator 
is called as complement generator which 
implies that the generator is a function 
of the perfect generator (produces fake 
realistic images, where the generated 
image distribution perfectly matches the 
true data distribution).

The supervised loss is calculated as the 
cross-entropy loss between predicted and 
ground-truth labels. According to Ming et 
al. [4], the unsupervised loss is regularised 
using entropy loss between predicted 
outputs from un-labeled and generated 
images. This regularisation reduces the 
entropy and encourages the classifier to 
assign a definitive label to the input.

Samples CNN SGAN Ours
1000 0.965 0.964

100 0.895 0.928
50 0.859 0.883
25 0.705 0.802

CNN SGAN Ours CNN SGAN Ours CNN SGAN
MNIST 0.705 0.802 0.755 0.859 0.883 0.793 0.895 0.928
SVHN 0.690 0.653 0.520 0.847 0.868 0.537 0.859 0.932
CIFAR10 0.683 0.770 0.150 0.742 0.729 0.330 0.831 0.794

MNIST SVHN CIFAR10 MNIST SVHN CIFAR10 MNIST SVHN
CNN 0.705 0.690 0.683 0.859 0.847 0.742 0.895 0.859
SGAN 0.802 0.653 0.770 0.883 0.868 0.729 0.928 0.932
Ours 0.919 0.520 0.700 0.985 0.537 0.813 0.980 0.844
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