Markov Random Fields Inference

Course Roadmap

Graphical models
Sequential data
Reinforcement learning

Guest lectures

Markov Random Fields Inference

Graphical Models - Part Il

CMPT 419/726
Mo Chen
SFU Computing Science
Feb. 24, 2020

Bishop PRML Ch. 8

Markov Random Fields Inference

Outline

Markov Random Fields

Inference

Markov Random Fields Inference

Outline

Markov Random Fields

Markov Random Fields Inference

Conditional Independence in Graphs

Cc C

- Recall that for Bayesian Networks, conditional
independence was a bit complicated

- d-separation with head-to-head links
- We would like to construct a graphical representation such
that conditional independence is straight-forward path
checking

Markov Random Fields Inference

Markov Random Fields

- Markov random fields (MRFs) contain one node per
variable
- Undirected graph over these nodes

- Conditional independence will be given by simple
separation, blockage by observing a node on a path

+ e.g.in above graph, A 1 B|C

Markov Random Fields Inference

Markov Blanket Markov

- With this simple check for conditional independence,
Markov blanket is also simple

+ Recall Markov blanket MB of x; is set of nodes such that x;
conditionally independent from rest of graph given MB

- Markov blanket is neighbours

Markov Random Fields

MRF Factorization

- Remember that graphical models define a factorization of
the joint distribution
- What should be the factorization be so that we end up with
the simple conditional independence check?
- For x; and x; not connected by an edge in graph:
X L x|y

- So there should not be any factor 1p(xi,xj) in the
factorized form of the joint

Markov Random Fields

Cligues

- Aclique in a graph is a subset of nodes such
that there is a link between every pair of
nodes in the subset

- A maximal clique is a clique for which one
cannot add another node and have the set
remain a clique

Markov Random Fields

MRF Joint Distribution

- Note that nodes in a clique cannot be made conditionally
independent from each other

+ So defining factors y(-) on nodes in a clique is “safe”
- The joint distribution for a Markov random field is:

1
p(xqg, ., Xg) = Z 1_[Yelxe)
C

where x is the set of nodes in clique €, and the product
runs over all maximal cliques

- Each y.(x:) =0
- Z is a normalizationconstant

Markov Random Fields Inference

MRF Joint Distribution Example

- The joint distribution for a Markov random field
is:

1
PGy k) =5 | [wetxo)
C

= 7 P123(x1, X2, X3)P234 (X2, X3, X4)

- Note that maximal cliques subsume smaller
ones: Y;,3(xq, x5, x3) could include ¥4, (x4, x5),
though sometimes smaller cliques are
explicitly used for clarity

Markov Random Fields

MRF Joint - Terminology

- The joint distribution for a Markov random field is:

1
p(xlr ""xK) = Zl_[ll}C(xC)
C

- Each y.(x.) is called a potential function
- Z, the normalization constant, is called the partition

function:
z=) | [we@o
X Cc

- Zis very costly to compute, since it is a sum/integral over
all possible states for all variables in x

- Don't always need to evaluate it though, will cancel for
computing conditional probabilities

Markov Random Fields

Hammersley-Clifford

- The definition of the joint:

1
PGy x0) =5 | [#e@o
c

- Note that we started with particular conditional
independences

- We then formulated the factorization based on clique
potentials

 This formulation resulted in the right conditional
independences

- Hammersley-Clifford theorem: The following sets of
distributions are equivalent.

- the set of distributions consistent with conditional
independences implied by the graph

- any distribution in the above form, %HC Ye(xe)

Markov Random Fields

Energy Functions

- Often use exponential, which is non-negative, to define
potential functions:

Yelxe) = exp{—Ec(xc)}

- Minus sign — by convention
- Ec(xc) is called an energy function
« From physics, low energy = high probability
- This exponential representation is known as the Boltzmann
distribution

Markov Random Fields

Energy Functions - Intuition

- Joint distribution nicely rearranges as

1
PGy 0 = 7| [wexo

1 c
=7 exp {_ Z Ec (xc)}
C

- Intuition about potential functions: ¥ are describing good
(low energy) sets of states for adjacent nodes

- An example of this is next

Markov Random Fields Inference

Image Denoising

- Consider the problem of trying to correct (denoise) an
image that has been corrupted

- Assume image is binary
- Observed (noisy) pixel values y; € {—1,+1}
- Unobserved true pixel values x; € {—1,+1}

Markov Random Fields Inference

Image Denoising - Graphical Model

X

- Cliques containing each true pixel value x; € {—1,+1} and
observed value y; € {—1,+1}

- Observed pixel value is usually same as true pixel value
« Energy function —nx;y;,n > 0, lower energy (better) if x; = y;

- Cliques containing adjacent true pixel values x;, x;

« Nearby pixel values are usually the same
+ Energy function —fx;x;, f > 0, lower energy (better)if x; = x;

Markov Random Fields Inference

Image Denoising - Graphical Model

Y

- Complete energy function:

E(x,y) =—p Z XiXj — 1 Z XY
{i.j} i
- Joint distribution:

1
p(x,y) = EeXp{—E(x. ¥}

- Or, as potential functions ¥, (x;, x;) = exp(Bx;x;), ¥, (x1, ¥;)
= exp(nx;y,):

1
p(x,y) = 7 1_[Y (x4, %)) l_[Yp (X, i)
ij i

Markov Random Fields Inference

Image Denoising - Inference

- The denoising query is argmax p(x|y)
X

- Two approaches:
« Iterated conditional modes (ICM): hill climbing in x, one
variable x; at atime
» Simple to compute, Markov blanket is just observation plus
neighbouring pixels
 Graph cuts: formulate as max-flow/min-cut problem, exact
inference (for this graph)

Markov Random Fields Inference

Converting Directed Graphs into Undirected Graphs

X1 X2 XN -1 XN
T To IN-1 TN

- Consider a simple directed chain graph:
p(x) = p(x)p(xz|x)p(xs]xz) ... p (X XN -1)
- Can convert to undirected graph
p(x) = %wlz(xlrxz)wm(xzﬁ%) ey v (evog, xy)

- Where 1, = p(x)p(x2|x1), Y1k = pOtylxp-1),Z =1

Markov Random Fields

Converting Directed Graphs into Undirected Graphs

- The chain was straight-forward because for each
conditional p(x;|pa;), nodes x; U pa; were contained in
one clique

+ Hence we could define that clique potential to include that
conditional
- For a general undirected graph we can force this to occur
by “marrying” the parents
« Add links between all parents in pa;
 This process known as moralization, creating a moral graph

Markov Random Fields

Strong Morals

X4 X4

- Start with directed graph on left
- Add undirected edges between all parents of each node
- Remove directionality from original edges

Inference

Markov Random Fields

Constructing Potential Functions

X1 X3 X1 X3

X2

X4 X4

- Initialize all potential functions to be 1

- With moral graph, for each p(x;|pa;), there is at least
one cligue which contains all of x; U pa;

+ Multiply p(x;|pa;) into potential function for one of
these cliques

- Z= 1again since

p(x) = 1_[Yelxe) = ﬂp(xilpai)
C i

which is already normalized

Inference

Markov Random Fields

Equivalence Between Graph Types

A B
A B

R

- Note that the moralized undirected graph loses some ofthe
conditional independence statements of the directed graph

- Further, there are certain conditional independence
assumptions which can be represented by directed graphs
which cannot be represented by undirected graphs, and
vice versa

- Directed graph: A 1L B|@,A T B|C, cannot be represented
using undirected graph

- Undirected graph: A T B|¢,A L B|CUD,C L D|JAUB
cannot be represented using directed graph

Markov Random Fields

Inference

Outline

=

25N 64

Inference

Inference

- Inference is the process of answering queries such as
p(xnlxe =e)
- We will focus on computing marginal posterior distributions
over single variables x,, using

p(xnlxe =e)x p(xn: Xe = e)

- The proportionality constant can be obtained by enforcing

Zp(xnlxe =e)=1
Xn

Markov Random Fields

Inference on a Chain

Ty T IN-1 TN

- Consider a simple undirected chain
- For inference, we want to compute p(x,, x, = e)
- First, we’ll show how to compute p(x;,)
« p(x,, x. = e) will be a simple modification of this

Inference

Inference
Inference on a Chain

Ty Io TN-1 TN

- The naive method of computing the marginal p(xn) is to
write down the factored form of the joint, and marginalize
(sum out) all other variables:

(xn)—z D Zp(x)

P

- This would be slow: 0(K") work if each variable could
take K values

Markov Random Fields Inference

Inference on a Chain

T To ITN-1 N

- However, due to the factorization terms in this summation
can be rearranged nicely

- This will lead to efficient algorithms

Markov Random Fields Inference

A Simple Chain

T To ITN-1 N

- First consider a chain with 3 nodes, and computing p(x3):

p(x3) = Z z P12 (X1, X2) W23 (x2, X3)

X1 X2

= z P23(x2, x3) Z P12(x1, x2)

Inference

Performing the sums
p(x3) = z P23(x2, %3) Z P12(x1, %2)

- For example, if x; are binary:

bt = 0 0 e =4 1
12\ A1) A2 h’d 23\A2,143 Elkx;)

X2

Z Y12(x1, %) = la+c¢ b+dl = p(x)

_>x'2
s(a+c) tla+c)
Y3 (%2, x3) X p15(x7) =XZT£(>b +d) v(b+ d)]
X3

p(x3) =[s(a+c)+ub+d) tla+c)+vb+d)]
_’lx.3

Inference

Complexity of Inference

- There were two types of operations
« Summation

Z P12(xq, x7)

X1
K x K numbers in 1, ,, takes 0(K?)time
- Multiplication

PYa3(xz,X3) X py12(x3)

Again 0(K?) work
- For a chain of length N, we repeat these operations N — 1
times each

« 0(NK?) work, versus 0(K") for naive evaluation

Inference

More complicated chain

- Now consider a 5 node chain, again asking for p(x;)

p(x3) = Z Z Z Z Y12 (X1, X)W 23 (X, X3) P34 (X3, X4) Pas (X4, X5)

X1 X2 Xa Xs

= Z Z PY12(x1, X2) P23 (x7, X3) Z Z PY34(x3, X4) P45 (x4, X5)

= [Z Z P12(x1, X2)23 (%2, xs)] [Z Z PY34(x3, X4)Pas5 (x4, X5)

- Each of these factors resembles the previous, and can be
computed efficiently
« Again 0(NK?) work

Inference

Message Passing
ta(Xn_1) #a (xn) Iﬂn) .uﬁ (*n+1)

n—1 n+1 XN

- The factors can be thought of as messages being passed
between nodes in the graph

pa2(x2) = Z P12(x1,X3)

is a message passed from node x, to node x, containing all
information in node x;

- In general,

Uk—-1k (xx)

Z Y1k =1, X) M2, 1—1 (Xpe—1)

Xk—1

- Possible to do so because of conditional independence

Inference

More complicated chain

- Now consider a 5 node chain, again asking for p(x;)

p(x3) = Z Z Z Z Y12 (X1, X)W 23 (X, X3) P34 (X3, X4) Pas (X4, X5)

X4 Xs

Z Z PY12(x1, X2) P23 (x7, X3) Z Z PY34(x3, X4) P45 (x4, X5)

= [Z Pa3(x2,x3) Z P12(x1, xz)] [Z PY34(x3,x4) Z Yas (x4, xs)]
= [z 1/J23(x2'x3)ll12(xz)] [Z lp34(x3,x4)u54(x4)]

= Up3(x3)1a3(x3)

Inference

Computing All Marginals
ﬂa(xn 1) ﬂa(xn) wn) .uﬁ(xn+1)

- Computing one marginal p(x,,) takes O(NK?) time

- Naively running same algorithms for all nodes in a chain
would take O(N?K?) time

- But this isn’t necessary, same messages can be reused at
all nodes in the chain

- Pass all messages from one end of the chain to the other,
pass all messages in the other direction too

- Can compute marginal at any node by multiplying the two
messages delivered to the node

« 2(N — 1)K?work, twice as much as for just one node

Inference

Including Evidence

- Ifanode x,_, = e is observed, simply clamp to
observed value rather than summing:

Mr—1x (X)) = Z Y-,k k1, X1) Mie—2 k-1 (Xe—1)

Xk—-1

becomes

.uk—l,k(xk) = ¢k—1,k(xk—1 =e, xk)#k—z,k—1(xk—1 =e)

Trees

- The algorithm for a tree-structured graph is
very similar to that for chains

- Formulation in PRML uses factor graphs, we’ll
just give the intuition here

- Consider calcuating the marginal p(x,,) for
the center node of the graph at right

- Treat x,, as root of tree, pass messages from
leaf nodes up to root

Inference

Inference

Trees

- Message passing similar to that in chains, but
possibly multiple messages reaching a node

- With multiple messages, multiply them
together

- As before, sum out variables

.uk—l,k(xk) = Z l/)k—1,k(xk—1:xk)llk—z,k—l(xk—ﬂ

Xk—1
- Known as sum-product algorithm
- Complexity still O(NK?)

Most Likely Configuration

- A similar algorithm exists for finding
arg max p(xq, .., Xy)
X1, XN

- Replace summation operations with maximize
operations
- Maximum of products at each node

- Known as max-sum, since often take
log-probability to avoid underflow errors

Inference

Inference

5 node chain

- Consider a 5 node chain, asking for arg max p(xy, ..., xs)
X1,2X5

xmagg p(xy, ., Xy) = xmagg Y12(x1, X2) P23 (X2, X3)P34(x3, X4) Pas (X4, Xs5)
1s0X5 1s:0X5

= max Y12 (X1, %2) P23 (%2, X3) P34 (X3, %4) max Pas(Xq, Xs5)
1r s 5

\—Y—l

v(xy)
= TT}CTZIX (¢23(x2' X3) H}C?X P12(xq, xz)) TTEX (1/’34(953' X4) n}lcax PYas (x4, xs))

[)

v12(x2) Vsa(xs)

Inference

General Graphs

- Junction tree algorithm is an exact inference method for
arbitrary graphs

A particular tree structure defined over cliques of variables
Inference ends up being exponential in maximum clique
size

Therefore slow in many cases

- Approximate inference techniques

Loopy belief propagation: run message passing scheme
(sum-product) for a while

* Sometimes works

* Not guaranteed to converge
Variational methods: approximate desired distribution using
analytically simple forms, find parameters to make these
forms similar to actual desired distribution (Ch. 10)
Sampling methods: represent desired distribution with a set
of samples, as more samples are used, obtain more
accurate representation (Ch. 11)

Conclusion

- Readings: Ch. 8
- Graphical models depict conditional independence
assumptions
- Directed graphs (Bayesian networks)
- Factorization of joint distribution as conditional on node
given parents
- Undirected graphs (Markov random fields)
- Factorization of joint distribution as clique potential
functions
- Inference algorithm sum-product, based on local message
passing
« Works for tree-structured graphs
« Non-tree-structured graphs, either slow exact or
approximate inference

Inference

