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Markov Random Fields Inference

Conditional Independence in Graphs

a b a b

c c

• Recall that for Bayesian Networks, conditional  
independence was a bit complicated

• d-separation with head-to-head links

• We would like to construct a graphical representation such  

that conditional independence is straight-forward path  

checking
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Markov Random Fields

C
B

A

• Markov random fields (MRFs) contain one node per  

variable

• Undirected graph over these nodes

• Conditional independence will be given by simple  
separation, blockage by observing a node on a path

• e.g. in above graph, 𝐴 ⫫ 𝐵|𝐶
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Markov Blanket Markov

• With this simple check for conditional independence, 
Markov blanket is also simple

• Recall Markov blanket 𝑀𝐵 of 𝑥𝑖 is set of nodes such that 𝑥𝑖
conditionally independent from rest of graph given 𝑀𝐵

• Markov blanket is neighbours
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MRF Factorization

• Remember that graphical models define a factorization of  

the joint distribution

• What should be the factorization be so that we end up with 

the simple conditional independence check?

• For 𝑥𝑖 and 𝑥𝑗 not connected by an edge in graph:

𝑥𝑖 ⫫ 𝑥𝑗|𝒙\ 𝑖,𝑗

• So there should not be any factor 𝜓 𝑥𝑖 , 𝑥𝑗 in the

factorized form of the joint



Markov Random Fields Inference

Cliques

• A clique in a graph is a subset of nodes such
that there is a link between every pair of  

nodes in the subset

• A maximal clique is a clique for which one
cannot add another node and have the set  

remain a clique

x1

x2

x3

x4
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MRF Joint Distribution

• Note that nodes in a clique cannot be made conditionally  
independent from each other

• So defining factors 𝜓 ⋅ on nodes in a clique is “safe”

• The joint distribution for a Markov random field is:

𝑝 𝑥1, … , 𝑥𝐾 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝒙𝐶

where 𝒙𝐶 is the set of nodes in clique 𝐶, and the product  

runs over all maximal cliques

• Each 𝜓𝐶 𝒙𝐶 ≥ 0

• 𝑍 is a normalizationconstant
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MRF Joint Distribution Example

• The joint distribution for a Markov random field  

is:

• Note that maximal cliques subsume smaller  

ones: 𝜓123 𝑥1, 𝑥2, 𝑥3 could include 𝜓12 𝑥1, 𝑥2 ,  

though sometimes smaller cliques are  

explicitly used for clarity

x1

x2

x3

x4

𝑝 𝑥1, … , 𝑥4 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝒙𝐶

=
1

𝑍
𝜓123 𝑥1, 𝑥2, 𝑥3 𝜓234 𝑥2, 𝑥3, 𝑥4
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MRF Joint - Terminology

• The joint distribution for a Markov random field is:

• Each 𝜓𝐶 𝒙𝐶 is called a potential function

• 𝑍, the normalization constant, is called the partition

function:

• 𝑍 is very costly to compute, since it is a sum/integral over  

all possible states for all variables in 𝒙
• Don’t always need to evaluate it though, will cancel for  

computing conditional probabilities

𝑝 𝑥1, … , 𝑥𝐾 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝒙𝐶

𝑍 =

𝒙

ෑ

𝐶

𝜓𝐶 𝒙𝐶
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Hammersley-Clifford

• The definition of the joint:

• Note that we started with particular conditional  

independences

• We then formulated the factorization based on clique  
potentials

• This formulation resulted in the right conditional  

independences

• Hammersley-Clifford theorem: The following sets of 

distributions are equivalent.

• the set of distributions consistent with conditional 

independences implied by the graph

• any distribution in the above form, 
1

𝑍
ς𝐶𝜓𝐶 𝒙𝐶

𝑝 𝑥1, … , 𝑥𝐾 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝒙𝐶
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Energy Functions

• Often use exponential, which is non-negative, to define  

potential functions:

• Minus sign − by convention

• 𝐸𝐶 𝒙𝐶 is called an energy function

• From physics, low energy = high probability

• This exponential representation is known as the Boltzmann  

distribution

𝜓𝐶 𝒙𝐶 = exp −𝐸𝐶 𝒙𝐶
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Energy Functions - Intuition

• Joint distribution nicely rearranges as

• Intuition about potential functions: 𝜓𝐶 are describing good  

(low energy) sets of states for adjacent nodes

• An example of this is next

𝑝 𝑥1, … , 𝑥𝐾 =
1

𝑍
ෑ

𝐶

𝜓𝐶 𝒙𝐶

=
1

𝑍
exp −

𝐶

𝐸𝐶 𝒙𝐶
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Image Denoising

• Consider the problem of trying to correct (denoise) an  

image that has been corrupted

• Assume image is binary

• Observed (noisy) pixel values 𝑦𝑖 ∈ −1,+1

• Unobserved true pixel values 𝑥𝑖 ∈ −1,+1
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Image Denoising - Graphical Model

xi

yi

• Cliques containing each true pixel value 𝑥𝑖 ∈ −1,+1 and  
observed value 𝑦𝑖 ∈ −1,+1

• Observed pixel value is usually same as true pixel value

• Energy function −𝜂𝑥𝑖𝑦𝑖 , 𝜂 > 0, lower energy (better) if 𝑥𝑖 = 𝑦𝑖

• Cliques containing adjacent true pixel values 𝑥𝑖 , 𝑥𝑗
• Nearby pixel values are usually the same
• Energy function −𝛽𝑥𝑖𝑥𝑗 , 𝛽 > 0, lower energy (better) if 𝑥𝑖 = 𝑥𝑗
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Image Denoising - Graphical Model

xi

yi

• Complete energy function:

• Joint distribution:

• Or, as potential functions 𝜓𝑛 𝑥𝑖, 𝑥𝑗 = exp 𝛽𝑥𝑖𝑥𝑗 , 𝜓𝑝 𝑥𝑖, 𝑦𝑖
= exp 𝜂𝑥𝑖𝑦𝑖 :

𝐸 𝒙, 𝒚 = −𝛽

𝑖,𝑗

𝑥𝑖𝑥𝑗 − 𝜂

𝑖

𝑥𝑖𝑦𝑖

𝑝 𝒙, 𝒚 =
1

𝑍
exp −𝐸 𝒙, 𝒚

𝑝 𝒙, 𝒚 =
1

𝑍
ෑ

𝑖,𝑗

𝜓𝑛 𝑥𝑖, 𝑥𝑗 ෑ

𝑖

𝜓𝑝 𝑥𝑖, 𝑦𝑖



Markov Random Fields Inference

Image Denoising - Inference

• The denoising query is argmax
𝑥

𝑝 𝒙|𝒚

• Two approaches:

• Iterated conditional modes (ICM): hill climbing in x, one  
variable 𝑥𝑖 at a time

• Simple to compute, Markov blanket is just observation plus  

neighbouring pixels

• Graph cuts: formulate as max-flow/min-cut problem, exact  

inference (for this graph)
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Converting Directed Graphs into Undirected Graphs

x1 x2 xN − 1 xN

• Consider a simple directed chain graph:

𝑝 𝑥 = 𝑝 𝑥1 𝑝 𝑥2|𝑥1 𝑝 𝑥3|𝑥2 …𝑝 𝑥𝑁|𝑥𝑁−1

• Can convert to undirected graph

𝑝 𝑥 =
1

𝑍
𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3 …𝜓𝑁−1,𝑁 𝑥𝑁−1, 𝑥𝑁

• Where 𝜓12 = 𝑝 𝑥1 𝑝 𝑥2|𝑥1 , 𝜓𝑘−1,𝑘 = 𝑝 𝑥𝑘|𝑥𝑘−1 , 𝑍 = 1
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Converting Directed Graphs into Undirected Graphs

• The chain was straight-forward because for each  
conditional 𝑝 𝑥𝑖|𝑝𝑎𝑖 , nodes 𝑥𝑖 ∪ 𝑝𝑎𝑖 were contained in 
one clique

• Hence we could define that clique potential to include that  

conditional

• For a general undirected graph we can force this to occur  
by “marrying” the parents

• Add links between all parents in 𝑝𝑎𝑖
• This process known as moralization, creating a moral graph
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Strong Morals

x1 x3

x2

x1 x3

x2

x4 x4

• Start with directed graph on left

• Add undirected edges between all parents of each node

• Remove directionality from original edges
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x4 x4

Constructing Potential Functions
x1 x3 x1 x3

x2 x2

• Initialize all potential functions to be 1

• With moral graph, for each 𝑝 𝑥𝑖 𝑝𝑎𝑖 , there is at least 
one clique which contains all of 𝑥𝑖 ∪ 𝑝𝑎𝑖

• Multiply 𝑝 𝑥𝑖 𝑝𝑎𝑖 into potential function for one of 

these cliques

• Z = 1 again since

which is already normalized

𝑝 𝒙 =ෑ

𝐶

𝜓𝐶 𝒙𝐶 =ෑ

𝑖

𝑝 𝑥𝑖 𝑝𝑎𝑖
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Equivalence Between Graph Types

C

A B

A

C

B

D

• Note that the moralized undirected graph loses some of the  

conditional independence statements of the directed graph

• Further, there are certain conditional independence  

assumptions which can be represented by directed graphs  

which cannot be represented by undirected graphs, and  

vice versa

• Directed graph: 𝐴 ⫫ 𝐵|∅,𝐴 ⫪ 𝐵|𝐶, cannot be represented  

using undirected graph

• Undirected graph: 𝐴 ⫪ 𝐵 ∅,𝐴 ⫫ 𝐵 𝐶 ∪ 𝐷, 𝐶 ⫫ 𝐷|𝐴 ∪ 𝐵
cannot be represented using directed graph
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Inference

• Inference is the process of answering queries such as

𝑝 𝑥𝑛 𝒙𝑒 = 𝒆

• We will focus on computing marginal posterior distributions 

over single variables 𝑥𝑛 using

𝑝 𝑥𝑛 𝒙𝑒 = 𝒆 ∝ 𝑝 𝑥𝑛, 𝒙𝑒 = 𝒆

• The proportionality constant can be obtained by enforcing



𝑥𝑛

𝑝 𝑥𝑛 𝒙𝑒 = 𝒆 = 1
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Inference on a Chain

• Consider a simple undirected chain

• For inference, we want to compute 𝑝 𝑥𝑛, 𝒙𝑒 = 𝒆

• First, we’ll show how to compute 𝑝 𝑥𝑛
• 𝑝 𝑥𝑛, 𝒙𝑒 = 𝒆 will be a simple modification of this
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Inference on a Chain

• The naive method of computing the marginal p(xn) is to  

write down the factored form of the joint, and marginalize  

(sum out) all other variables:

• This would be slow: 𝑂 𝐾𝑁 work if each variable could  

take 𝐾 values

𝑝 𝑥𝑛 =

𝑥1

… 

𝑥𝑛−1



𝑥𝑛+1

…

𝑥𝑁

𝑝 𝒙

=

𝑥1

… 

𝑥𝑛−1



𝑥𝑛+1

…

𝑥𝑁

1

𝑍
ෑ

𝐶

𝜓𝐶 𝒙𝐶
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Inference on a Chain

• However, due to the factorization terms in this summation  

can be rearranged nicely

• This will lead to efficient algorithms
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A Simple Chain

• First consider a chain with 3 nodes, and computing 𝑝 𝑥3 :

𝑝 𝑥3 =

𝑥1



𝑥2

𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3

=

𝑥2

𝜓23 𝑥2, 𝑥3 

𝑥1

𝜓12 𝑥1, 𝑥2
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Performing the sums

• For example, if 𝑥𝑖 are binary:

𝑝(𝑥3) =

𝑥2

𝜓23 𝑥2, 𝑥3 

𝑥1

𝜓12 𝑥1, 𝑥2

𝜓12 𝑥1, 𝑥2 = 𝜓23 𝑥2, 𝑥3 =

𝑥2



𝑥1

𝜓12 𝑥1, 𝑥2 = 𝑎 + 𝑐 𝑏 + 𝑑 ≡ 𝜇12 𝑥2

𝜓23 𝑥2, 𝑥3 × 𝜇12 𝑥2 =

𝑝(𝑥3) = 𝑠 𝑎 + 𝑐 + 𝑢 𝑏 + 𝑑 𝑡 𝑎 + 𝑐 + 𝑣 𝑏 + 𝑑

𝑎 𝑏
𝑐 𝑑

𝑥1

𝑥3

𝑥2 𝑠 𝑡
𝑢 𝑣

𝑥2

𝑠 𝑎 + 𝑐 𝑡 𝑎 + 𝑐
𝑢 𝑏 + 𝑑 𝑣 𝑏 + 𝑑
𝑥3

𝑥2

𝑥3
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Complexity of Inference

• There were two types of operations

• Summation

𝐾 × 𝐾 numbers in 𝜓12, takes 𝑂 𝐾2 time

• Multiplication

Again 𝑂 𝐾2 work

• For a chain of length 𝑁, we repeat these operations 𝑁 − 1
times each

• 𝑂 𝑁𝐾2 work, versus 𝑂 𝐾𝑁 for naiveevaluation



𝑥1

𝜓12 𝑥1, 𝑥2

𝜓23 𝑥2, 𝑥3 × 𝜇12 𝑥2
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More complicated chain

• Now consider a 5 node chain, again asking for 𝑝 𝑥3

• Each of these factors resembles the previous, and can be  
computed efficiently

• Again 𝑂 𝑁𝐾2 work

𝑝 𝑥3 =

𝑥1



𝑥2



𝑥4



𝑥5

𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3 𝜓34 𝑥3, 𝑥4 𝜓45 𝑥4, 𝑥5

=

𝑥2



𝑥1

𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3 

𝑥4



𝑥5

𝜓34 𝑥3, 𝑥4 𝜓45 𝑥4, 𝑥5

= 

𝑥2



𝑥1

𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3 

𝑥4



𝑥5

𝜓34 𝑥3, 𝑥4 𝜓45 𝑥4, 𝑥5



Markov Random Fields Inference

Message Passing

• The factors can be thought of as messages being passed  

between nodes in the graph

is a message passed from node 𝑥1 to node 𝑥2 containing all  

information in node 𝑥1

• In general,

• Possible to do so because of conditional independence

𝜇𝛼 𝑥𝑛−1 𝜇𝛼 𝑥𝑛 𝜇𝛽 𝑥𝑛 𝜇𝛽 𝑥𝑛+1

𝑥𝑛+1𝑥𝑛𝑥𝑛−1𝑥1 𝑥𝑁

𝜇12 𝑥2 ≡

𝑥1

𝜓12 𝑥1, 𝑥2

𝜇𝑘−1,𝑘 𝑥𝑘 ≡ 

𝑥𝑘−1

𝜓𝑘−1,𝑘 𝑥𝑘−1, 𝑥𝑘 𝜇𝑘−2,𝑘−1 𝑥𝑘−1



Inference

More complicated chain

• Now consider a 5 node chain, again asking for 𝑝 𝑥3

𝑝 𝑥3 =

𝑥1



𝑥2



𝑥4



𝑥5

𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3 𝜓34 𝑥3, 𝑥4 𝜓45 𝑥4, 𝑥5

=

𝑥2



𝑥1

𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3 

𝑥4



𝑥5

𝜓34 𝑥3, 𝑥4 𝜓45 𝑥4, 𝑥5

= 

𝑥2

𝜓23 𝑥2, 𝑥3 

𝑥1

𝜓12 𝑥1, 𝑥2 

𝑥4

𝜓34 𝑥3, 𝑥4 

𝑥5

𝜓45 𝑥4, 𝑥5

= 

𝑥2

𝜓23 𝑥2, 𝑥3 𝜇12 𝑥2 

𝑥4

𝜓34 𝑥3, 𝑥4 𝜇54 𝑥4

= 𝜇23 𝑥3 𝜇43 𝑥3
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Computing All Marginals

• Computing one marginal 𝑝 𝑥𝑛 takes 𝑂 𝑁𝐾2 time

• Naively running same algorithms for all nodes in a chain  

would take 𝑂 𝑁2𝐾2 time

• But this isn’t necessary, same messages can be reused at  

all nodes in the chain

• Pass all messages from one end of the chain to the other,  

pass all messages in the other direction too

• Can compute marginal at any node by multiplying the two  
messages delivered to the node

• 2 𝑁 − 1 𝐾2 work, twice as much as for just one node

𝜇𝛼 𝑥𝑛−1 𝜇𝛼 𝑥𝑛 𝜇𝛽 𝑥𝑛 𝜇𝛽 𝑥𝑛+1

𝑥𝑛+1𝑥𝑛𝑥𝑛−1𝑥1 𝑥𝑁
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Including Evidence

• If a node 𝑥𝑘−1 = 𝑒 is observed, simply clamp to 

observed  value rather than summing:

becomes

𝜇𝑘−1,𝑘 𝑥𝑘 = 

𝑥𝑘−1

𝜓𝑘−1,𝑘 𝑥𝑘−1, 𝑥𝑘 𝜇𝑘−2,𝑘−1 𝑥𝑘−1

𝜇𝑘−1,𝑘 𝑥𝑘 = 𝜓𝑘−1,𝑘 𝑥𝑘−1 = 𝑒, 𝑥𝑘 𝜇𝑘−2,𝑘−1 𝑥𝑘−1 = 𝑒
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Trees

• The algorithm for a tree-structured graph is  

very similar to that for chains

• Formulation in PRML uses factor graphs, we’ll  

just give the intuition here

• Consider calcuating the marginal 𝑝 𝑥𝑛 for

the  center node of the graph at right

• Treat 𝑥𝑛 as root of tree, pass messages from  

leaf nodes up to root
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Trees

• Message passing similar to that in chains, but  

possibly multiple messages reaching a node

• With multiple messages, multiply them  

together

• As before, sum out variables

• Known as sum-product algorithm

• Complexity still 𝑂 𝑁𝐾2

𝜇𝑘−1,𝑘 𝑥𝑘 = 

𝑥𝑘−1

𝜓𝑘−1,𝑘 𝑥𝑘−1, 𝑥𝑘 𝜇𝑘−2,𝑘−1 𝑥𝑘−1
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Most Likely Configuration

• A similar algorithm exists for finding

• Replace summation operations with maximize 

operations

• Maximum of products at each node

• Known as max-sum, since often take  

log-probability to avoid underflow errors

arg max
𝑥1,…,𝑥𝑁

𝑝 𝑥1, … , 𝑥𝑁
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5 node chain

• Consider a 5 node chain, asking for arg max
𝑥1,…,𝑥5

𝑝 𝑥1, … , 𝑥5

max
𝑥1,…,𝑥5

𝑝 𝑥1, … , 𝑥𝑁 = max
𝑥1,…,𝑥5

𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3 𝜓34 𝑥3, 𝑥4 𝜓45 𝑥4, 𝑥5

= max
𝑥1,…,𝑥4

𝜓12 𝑥1, 𝑥2 𝜓23 𝑥2, 𝑥3 𝜓34 𝑥3, 𝑥4 max
𝑥5

𝜓45 𝑥4, 𝑥5

= max
𝑥2

𝜓23 𝑥2, 𝑥3 max
𝑥1

𝜓12 𝑥1, 𝑥2 max
𝑥4

𝜓34 𝑥3, 𝑥4 max
𝑥5

𝜓45 𝑥4, 𝑥5

𝜈 𝑥4

𝜈54 𝑥4𝜈12 𝑥2
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General Graphs

• Junction tree algorithm is an exact inference method for  
arbitrary graphs

• A particular tree structure defined over cliques of variables

• Inference ends up being exponential in maximum clique  

size

• Therefore slow in many cases

• Approximate inference techniques

• Loopy belief propagation: run message passing scheme  
(sum-product) for a while

• Sometimes works

• Not guaranteed to converge

• Variational methods: approximate desired distribution using  

analytically simple forms, find parameters to make these  

forms similar to actual desired distribution (Ch. 10)

• Sampling methods: represent desired distribution with a set  

of samples, as more samples are used, obtain more  

accurate representation (Ch. 11)



Markov Random Fields Inference

Conclusion

• Readings: Ch. 8

• Graphical models depict conditional independence  

assumptions

• Directed graphs (Bayesian networks)

• Factorization of joint distribution as conditional on node  

given parents

• Undirected graphs (Markov random fields)

• Factorization of joint distribution as clique potential  

functions

• Inference algorithm sum-product, based on local message  
passing

• Works for tree-structured graphs

• Non-tree-structured graphs, either slow exact or  

approximate inference


