Feed-forward Networks Network Training Error Backpropagation

Neural Networks

CMPT 419/726
Mo Chen
SFU Computing Science
Jan. 29, 2020

Bishop PRML Ch. 5

Deep Learning

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

Neural Networks

- Neural networks arise from attempts to model
human/animal brains

« Many models, many claims of biological plausibility
- We will focus on multi-layer perceptrons
- Mathematical properties rather than plausibility

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

Applications of Neural Networks

- Many success stories for neural networks, old and new

- Credit card fraud detection

- Hand-written digit recognition

- Face detection

 Autonomous driving (CMU ALVINN)
« Object recognition

- Speech recognition

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Network Training

Error Backpropagation

Deep Learning

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Feed-forward Networks

Feed-forward Networks

Feed-forward Networks

- We have looked at generalized linear models of the form:

M
yew) = £| D widy @
=1

J

for fixed non-linear basis functions ¢(-)
« We now extend this model by allowing adaptive basis
functions, and learning their parameters
- In feed-forward networks (a.k.a. multi-layer perceptrons)
we let each basis function be another non-linear function of
linear combination of the inputs:
M
B0 =f()

j=1

Feed-forward Networks

Feed-forward Networks

- Starting with input x = (x1, ..., Xp), construct linear

combinations:
D

@ =) (wx+)

i=1
These a; are known as activations
- Pass through an activation function h(-) to get output

z = h(a;)
« Model of an individual neuron

x_0=-1 Bias Weight

w_j0
x_1 w_j1
\) h
a_j f
—A\ X
D /
Input Input Activation Qutput
Links Function Fuonction Output Links

from Russell and Norvig, AIMA2e

Feed-forward Networks

Activation Functions

- Can use a variety of activation functions
- Sigmoidal (S-shaped)
* Logistic sigmoid 1/(1 + exp(—a)) (useful forbinary
classification)

+ Hyperbolic tangent tanh(-)
2
- Radial basis function z; = Y;(x; — w;;
- Softmax = Zilxi = wi)
» Useful for multi-class classification
- ldentity
» Useful for regression

« Threshold

- Needs to be differentiable for gradient-based learning
(later)

- Can use different activation functions in each unit

Feed-forward Networks

Deep Learning

Network Training Error Backpropagation

Activation Functions

Common choices of activation functions
Softplus:
log(1 + e*)

Hyperbolic tangent: K
tanh x 0

Rectified linear unit (ReLU): .
max(0, x) o

Key feature: easy to differentiate

Feed-forward Networks

Feed-forward Networks

hidden units

- Connect together a numb@r of these units into a feed-
forward network (DAG)

- Above shows a network with one layer of hidden units

- Implements function

v (x,w) = h® Z W(Z)h(l) Zw(l)xl + Wj(ol) + W,E(Z))

Outline

Feed-forward Networks
Network Training

Error Backpropagation

Deep Learning

=

it
v
a
i
v

25N 64

Network Training

Network Training

- Given a specified network structure, how do we set its
parameters (weights)?

- As usual, we define a criterion to measure how well our
network performs, optimize against it

- For regression, training data are (x,, t,),t, € R
- Squared error naturally arises:

N
Ew) =) (yConw) =)2
n=1

- For binary classification, this is another discriminative
model, ML:

N
p(tlw) = Hyﬁ”{l A
n=1

N

Ew) ==) {taln) + (1 = £,) In(1 = y,)}

n=1

Feed-forward Networks Network Training Error Backpropagation

Parameter Optimization
E(w)

Wo VE

- For either of these problems, the error function E (w)

is nasty

« Nasty = non-convex
» Non-convex = has local minima

Deep Learning

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

A Non-Convex function

: Glabal
et Maximun

T A Local T
Mairrore ..

:AI__m:_ . :

Aside: Optimization Program

©_ Global
< Makimum

minimize f(x) .
subjectto g;(x) <0,i=1,..,n T
hj(x)=0,j=1,..,m "
erre . 2 I . o e 3
* Very difficult to solve in general B

* Trade-offs to consider: computation time, solution opumauty

* Easy cases:
* Find global optimum for linear program: f, g;, h; are linear
* Find global optimum for convex program: f, g; are convex, h; is linear
* Find local optimum for nonlinear program: f, g;, h; are differentiable

* Neural Networks: Nonlinear and unconstrained

Convex Functions

0f () + (1 -0)f(y

FlOx+(1—0)yT

A 4

* Convex function

fOx+(1-0)y) <0f(x)+ (1 —-0)f(y)forallx,y
€ R", forall 8 € [0,1]

y

* Sublevel sets of convex functions, {x: f(x) < C},
are convex

* Convex shape C:
X1,X2 € C,g € [0,1] = le + (1 - 9)x2 eC

Convex Functions

* Convex function

fx+(1-0)y) <0f(x)+ (1 —-0)f(y)forallx,y
€ R, forall 6 € [0,1]

* Sublevel sets of convex functions, {x: f(x) < C},
are convex

* Convex shape C:
X1,Xy € C,0¢€ [0,1] = 9x1 + (1 - G)XZ €C
* Superlevel sets of convex functions are not convex!

Common Convex Functions on R

* f(x) =e™isconvexforallx,a € R

* f(x) =x%isconvexonx > 0ifa>1ora < 0;concaveif 0 <a <1

* f(x) =logx is concave

* f(x) = xlogx is convex for x > 0 (or x = 0 if defined to be 0 when x = 0)
fx) =e% flx) =x¢

a5t —a=2

oef |——log(x)

——a=1 — x*log(x)

a=0.5

0 o0s 1 15 2 25 3 35 4 45 5

Common Convex Functions on R™

* f(x) = Ax + b is convex for any 4, b
* Every norm on R" is convex
o f(x) = max(xy, x3, ..., X,) is convex

2

e f(x) = %(forxz > 0)
2

* Log-sum-exp softmax: f(x) = %log(e"""1 + ef¥2 4o 4 ghxn)

1
(ITiz 1 x)n, x; >0

* Geometric mean: f(x)

05

1
fG0) = glog(e™ + %%2)

05

Network Training

Descent Methods

- The typical strategy for optimization problems of this sort is
a descent method:

w(T+1) — w(T) + Aw(T)

- As we've seen before, these come in many flavours
- Gradient descent VE (w®)
- Stochastic gradient descent VE,, (w®)
- Newton-Raphson (second order)
- All of these can be used here, stochastic gradient descent
is particularly effective
- Redundancy in training data, escaping local minima

Numerical Solution: Gradient Methods

* Start from J;;o and*construct a sequence x*

such that x* —» x

« Calculate x**! from x* by “going down the
gradient”

. Un(r):onstrained case: x**1 = xk — akVf(x), a¥
>

Numerical Solution: Gradient Methods

* Start from J&O and construct a sequence x*

such that x* — x*

« Calculate x**! from x* by “going down the
gradient”

. Un(t):onstrained case: x**1 = x* — a*Vf(x), a®
>

 More generally, x**1 = x* + a*d¥* for some

d such that
Vf(x*)-dk <0

* Tuning parameters: descent direction d¥, and
step size a

\ N

\
\

/
_—

A\
“\\\ \\ / /‘ “‘ ‘ Ji

N S
e

,/"

Descent Direction

* Steepest descent: d¥ = —Vf(xk)
. xk+1 — xk — aka(x)
* Simple but sometimes leads to slow convergence

-1
« Newton’s method: dk = (VZf(xk)) Vf(xkj 28 26 24 22 2 A8 -6 -4
* Minimize the quadratic approximation: 1
G = F9) + TF () (2 = x) + 5 (= x) THA() (x = %)
* Set gradient to zero to obtain next iterate
VG = Vf(x) + Hf(x*)(x - x*) = 0
-1
= xkHl =k — (Hf(xk)) VF(x¥)
* Fast convergence, but matrix inverse required
 Alternatively, use an algorithm to minimize a quadratic function

Step Size

* Recall x¥*1 = x¥ + akdk, with Vf(xk)Td" <0

* Line search: choose a* = mi(r)lf(x" + akdk)
az
* Requires minimization

+ Constant step size: ak =

* May not converge

a

+ Diminishing step size: a¥ = 0
« Still need to explore %II regions Y, a® = oo

a
* For example: ak = -

Numerical Solution: Second Order Methods

R 1
minimize (r")de+Ed;Bkdx
X
k

=x —x",

fx) —

minimize
where dy :

* Quadratize f(x):
rk = V£ (xi)
By = Hf (x)

* Convexify if needed, eg. by removing negative eigenvalues

Example

minimize 0.5x* + 0.8x3 —3x%2 —2x +5

subjectto—3 <x <2
10 ; : : : : — ; ;

Network Training

Computing Gradients

- The function y(x,,, w) implemented by a network
is complicated

- Itisn’t obvious how to compute error function derivatives
with respect to weights

- Numerical method for calculating error derivatives, use
finite differences:

aEn N En(Wji + E) - En(Wji — E)
ale‘ - 2€

- How much computation would this take with W weights in
the network?

« O(|W]) per partial derivative (evaluation of E,,)

« 0(JW|?) total per gradient descent step (there are |W|
partial derivatives)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Outline

Error Backpropagation

Feed-forward Networks

Feed-forward Networks

hidden units

(€9)
1 M

- Connect together a numbe?J of these units into a
feed-forward network (DAG)
- Above shows a network with one Iayer of hidden units

- Implements function: o

M ' D '
YonaCon) = H2 (Z (Z WPx+) * w,%)
=1 . =1 .

T
Z(n),j

Error Backpropagation

Error Backpropagation

- Backprop is an efficient method for computing error

L dE
derivatives C
awm

_+ 0(W) to compute derivatives wrt all weights
- First, feed training example x,, forward through the network,

storing all activations a;
- Calculating derivatives for weights connected to output
nodes is easy

- e.g. For linear output nodes y, = Ziw,gf)z((rﬁ;il):

0E, 0 1

- 2 _ @-1
©~ gyD2 (Yo = tani)” = Yoy = t(n).k)z(n),i
ki

ow,;

- For hidden layers, propagate error backwards from the
output nodes

Opportunity to participate in
robotics research

The SFU Rosie and MARS Labs are running an experiment to better understand human navigational intent - that is, predicting
where a human may move to in the next several seconds.

*Experiment takes 30 Min.
*Each participant will receive a $10 Starbucks gift card.
*Spaces are limited to the first 40 students.

For more information:

http://tiny.cc/kdbjjz

Feed-forward Networks

Deep Learning

Network Training Error Backpropagation

EI’I’OI’ BaCkpropagatlon hidden units

e
X
Y(n).k» Ey: b
* n:data point
e k:component inputs
(m), : /
Wii 10
* m:layer
* j:index matching output X0

e {:index matching input

N
1 2 W, L-1
E(w) = 3 Z Z()’(n),k —tax) s Yk = Z Wi Z(n),i
n=1 k i

1 2
E,(w) = EZ(J’(n).k — k)
k

aE 1 2 (L—l)
aw(’; aw,ﬁf)fz(y(")'k'_t(")'k') = (Yoo =t 2 (%)

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

Chain Rule for Partial Derivatives

- A“reminder”

- For f(x,y), with f differentiable wrt x and y, and x andy
differentiable wrt u:

6f_6f6x+6f6y
ou 0xdu 0dyou

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

Error Backpropagation “‘dde;(“;;ts

- We can write
aEn 0 (m) (m) (m)
= E (a a v, a)
(m) (m) " \"(n),1’ " (n),2’ =’ ¥ (n),D
awﬁ 6wji

inputs .

- Using the chain rule: 10

(m) (m)
0E, 0E, 044y; Z 0En i x,
m) — 5 (m) (m) (m) (m)
aw;; 0ac,y aw; w0000y aw;

where), (--+) runs over all other nodes k in the same layer (m)

- Since a%? does not depend on wj(im)

to O:

, all terms in the summation go
dE, 0, da(y;

(m) — 5 (m) 5 (m)
Owi™ 0agy ; Iw;

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

Error Backpropagation cont.

hidden units

XD
(m) ._ OEn :
- Introduce error &)’ = 2al™ inputs
n.j

(m)
0E, _ om) aa(n),}' X1
(m) ~ “(),j aW(m)

aWji ji X,

- Other factor is

(m)

0dgy,; 0 (m) (m=1) _ (m=1)
W. = Z.

PR o IR

]l

0En__ som n-v)
(m) m),j%
ow]

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

Error Backpropagation cont,

hidden units
€Y ziy)
Xp
- Error 6(n)1 can also be computed using \ Yk
Chain rule. inputs outputs
(m+1) .
5(7") . aEn _ aE aa(n),k X ./A /). Y1
O da S.m — 9a™mtD 5,0
An),j 2%k %%, W1(§)

where Y., (-++) runs over all nodes k in the layer after.

(m+1) _ (m+1) (m) (m+1) (m)
U z Z(n)i = ZW hem (afys)

daiil) (

n +1

> i = wi V(™Y ()
0a(ny,;

(m) (m+1) (m+1) (m) (m) (m+1) (m+1)
Onyj = Z S wip P (™) (a,) = (k) (aty) Z Stk Wi
k

Error Backpropagation

Error Backpropagation cont.

. Error 8™ can also be computed using chain rule:

m),j B)
m+1
6(m) (')En _ Z aE aa(n) k
m),j ™ 5 (m) — (m+1) (m)
0y 0any i 990y,

S
where Y., () runs over all nodes k in the layer after.
- Eventually:

(m) (m) (m+1) (m+1)
Sy = (™) (ay), Z%)k Wiej

« A weighted sum of the later error “caused” by this weight

Error Backpropagation

Error Backpropagation cont.

- Eventually:

(m) (m) (m+1) (m+1)

5oy = (™) (alny; Z%)k Wiic

where Y, (-++) runs over Fall nodes k in the layer after.

- Above recursion relation needs last set of errors: 8].(”

613;;) 5((713)} 7m0 (by definition)
6Wﬁ

J0E,
_ o0 @-1) _ (L-1)
aw w S(n)]Z(n) i (y(n),j - t(n).j)z(n),i

]l

(from before (x))

6((713.1' =Y, ~tm,; (by comparison)

Error Backpropagation

Summary

- . ow)
Output Definition / forward propagation

M D
1 -1 1
Yy Gy w) = ROTFD <z Wj(;:M Tpm < Wigm)z(%,i)+ Wé?) +wigt)>
5 1

=1 i=
e Savez, a hidden units
Gradient computation / backpropagation @ zlf,,l)

OE. L-1
* Lastlayer: (rz) = (y(n),k - t(n)'k)z((n)’i)
ow;
ik

OE,

(m)
0a(ny

* Previous layers: Define 5((,13_)]- =
Starting from last layer,
8. = Vi~ twj
OB _ som)_(m-1)
6wl.(].m) —Tmtmi
where 6G5); = () (afy)) Z 8wty
k

Recursion:

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

Summary

Output Definition / forward propagation o)

M D
1 -1 1
Yy Gy w) = ROTFD <Z Wj(;:M Tpm < Wi(jm)z((::;,i)+ Wé;'n)> +wigt))
5 1

=1 i=
e Savez, a
Gradient computation / backpropagation Goes through one layer of weights

0k, (L-1)
* Llastlayer: _GW(L) = (y(n),k — t(n),k)Z(n),,- l
. 0E
* Previous layers: Define 5((,13_)]- = aaT,Z) ow)
m),j
Starting from last layer, "
w _
Omy,j = Y.j ~ tm T

0E, — gm (m-1) Goes through one layer of weights
w™ m),jem,i
ij
(m) _ r((m) (m+1) . (m+1)
where &y = (htm) (a(")'f)z 8, Wi
k

Recursion:

Network Training

Descent Methods

- Error function:

N
1 2 1 2
E(w) = EZ Z(Y(n),k —tmx) , Enw)= EZ(Y(n),k = tyx)
n=1 k k

- y(x,w) is a neural network, very complex
- Cannot solve arg min E (w) explicitly (like in linear
w

~ regression)
- Gradient Descent;

w@D — @ _ U(T)VE(W (T))

- Stochastic Gradient Descent:

- n chosen randomly
w1 = @ _ p@yE, (W (T))
- A batch V' chosen randomly

W@ — @ _ @ z VE,(w®)
nenN

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

Tensorflow Playground

- https://playground.tensorflow.org

https://playground.tensorflow.org/

Outline

Feed-forward Networks
Network Training
Error Backpropagation

Deep Learning

=

it
v
a
i
v

25N 64

Deep Learning

Deep Learning

- Collection of important techniques to improve
performance:

 Multi-layer networks

- Convolutional networks, parameter tying

- Hinge activation functions (ReLU) for steeper gradients
+ Momentum

- Drop-out regularization

- Sparsity

+ Auto-encoders for unsupervised feature learning

- Scalability is key, can use lots of data since stochastic
gradient descent is memory-efficient, can be parallelized

Deep Learning

Hand-written Digit Recognition

F e /796t al
6757 8345 s
210790/ X376
4Ny l9o/l ¢ 89y
T 6l ¥44 1580
1589265 % 11 97
222deBd34#Y §O
a3 80738657
Ol by b g2« 3

72810649806/

- MNIST - standard dataset for hand-written digitrecognition
« 60000 training, 10000 test images

Feed-forward Networks Network Training Error Backpropagation Deep Learning

LeNet-5, circa 1998

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
32x32 6@28x28

S2: f.maps
6@14x14

‘ FuIIconrJection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Fullconnection

- LeNet developed by Yann LeCun et al.
- Convolutional neural network
» Local receptive fields (5x5 connectivity)
* Subsampling (2x2)
» Shared weights (reuse same 5x5 “filter”)
+ Breaking symmetry

Feed-forward Networks Network Training Error Backpropagation Deep Learning

ImageNet

Strawberry

Traffic light

Backpack

Matchstick

_Sea lion

- ImageNet - standard dataset for object recognition in
images (Russakovsky et al.)
- 1000 image categories, =~1.2 million training images
(ILSVRC 2013)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

GoogLeNet, circa 2014

s - GoogLeNet developed by Szegedy et
Q%E al., CVPR 2015
EREE
e - Modern deep network
.. -WE - ImageNet top-5 error rate of 6.67%
\EEAERES .
; (later versions even better)

ExE e:

%:E - Comparable to human performance
pt1- (especially for fine-grained categories)
gt

Feed-forward Networks Deep Learning

Network Training Error Backpropagation

ResNet, circa 2015

- ResNet developed by He et al., ICCV
2015

- 152 layers
- ImageNet top-5 error rate of 3.57%

- Better than human performance
(especially for fine-grained categories)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 1: Convolutional Filters

- Share parameters across

network
-.H IIIJ - Reduce total number of
===== Hﬂﬂ:l parameters
Fack®= EEMITE . povide transiation

invariance, useful for visual
recognition

Common Operations

* Fully connected (dot product)

* Convolution
* Translationally invariant
* Controls overfitting

* Pooling (fixed function)
* Down-sampling
 Controls overfitting

max pool with 2x2 filters
and stride 2 6|8

4
8
0 3|4
4

=l w|a| =
NN -
W o= NN

* Nonlinearity layer (fixed function)

« Activation functions, e.g. ReLU v Stanford C5231n

Example: Small VGG Net From Stanford CS231n

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl

bbb bbb by

Ttruck

[@itplane

A

LRTRTEN

igﬁip

TIVE

1
/|

b

— Jﬁérse

|
|

EAATRGYNK

L

e
||
I
———
> o
:4\
=]
=
ﬁ
=
=

Neural Network Architectures

* Convolutional neural network (CNN)
* Has translational invariance properties from convolution
* Common used for computer vision

* Recurrent neural network RNN

* Has feedback loops to capture temporal or sequential
information

 Useful for handwriting recognition, speech recognition,
reinforcement learning

* Long short-term memory (LSTM): special type of RNN with
advantages in numerical properties
* Others
¢ General feedforward networks, variational autoencoders
(VAEs), conditional VAEs, generative adversarial networks

Unfold fw [w FW

—
"(=+ R~ -

S fu K

© SO

Training Neural Networks

* Data preprocessing
* Removing bad data
* Transform input data (e.g. rotating, stretching, adding noise)

* Training process (optimization algorithm)
* Choice of loss function (eg. L1 and L2 regularization)
* Dropout: randomly set neurons to zero in each training iteration
* Learning rate (step size) and other hyperparameter tuning

* Software packages: efficient gradient computation
* Caffe, Torch, Theano, TensorFlow

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 2: Rectified Linear Units (ReLUSs)

- Vanishing gradient problem
- If derivatives very small, no/little
progress via stochastic gradient
descent
« Occurs with sigmoid function
when activation is large in
absolute value

- ReLU: h(aj) = max(O, aj)
- Non-saturating, linear gradients

(as long as non-negative
activation on some training data)

- Sparsity inducing

Deep Learning

Key Component 3: Many, Many Layers

¥

Layer I-2
- ResNet: =152 layers (“shortcut
+ connections”)
Layer I-1 - GooglLeNet: =27 layers
(“Inception” modules)
* - VGG Net: 16-19 layers
Layer | (Simonyan and Zisserman, 2014)
+ - AlexNet: 8 layers (Krizhevsky et
al., 2012)

Deep Learning

Key Component 3: Many, Many Layers

- ResNet: =152 layers (“shortcut
connections”)
- GooglLeNet: =27 layers
(“Inception” modules)
o - VGG Net: 16-19 layers (Simonyan
:h“ and Zisserman, 2014)
- AlexNet: 8 layers (Krizhevsky et
al., 2012)

Feed-forward Networks Network Training Error Backpropagation PEEplLearmng

Key Component 3: Many, Many Layers

- ResNet: =152 layers (“shortcut
connections”)
- GooglLeNet: =27 layers
RELU RELU RELU RELU RELU RELU (“Inception” modules)

- VGG Net: 16-19 layers
(Simonyan and Zisserman, 2014)

- AlexNet: 8 layers (Krizhevsky et
al., 2012)

Key Component 4: Momentum

- Trick to escape plateaus / local minima
- Take exponential average of previous gradients
9E," OE,. OE,

= +a
aWﬂ aW]l aW]l

- Maintains progress in previous direction

Deep Learning

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 5: Asynchronous Stochastic Gradient
Descent

- Big models won't fit in memory

- Want to use compute clusters
(e.g. 1000s of machines) to run
stochastic gradient descent

=
Parameter Server W = W - UAW

DoDODDD - How to parallelize computation?

w//Aw \'\ - Ignore synchronization across
machines
Model D[:] DD D[:] H
refias () (D0 (OO0 « Just let each machine compute
b its own gradients and pass to a
Shards @ Eﬁ Ej server storing current
parameters

+ Ignore the fact that these
updates are inconsistent

+ Seems to just work (e.g. Dean
et al. NIPS 2012)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 6: Learning Rate Schedule

- How to set learning rate n?:

T — -1
- wt=w +nVw

400

- Option 1: Run until validation
L™ error plateaus. Drop learning rate

200|

:""1“"“'\":\‘,.‘,“ by X%
T - Option 2: Adagrad, adaptive
T ™ gradient. Per-element learning

rate set based on local geometry
(Duchi et al. 2010)

Feed-forward Networks Network Training Error Backpropagation BECpEcaAming

Key Component 7: Data Augmentation

- Augment data with additional
synthetic variants (10x amount of
data)

- Or just use synthetic data, e.qg.
Sintel animated movie (Butler et
al. 2012)

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Key Component 8: Data and Compute

- Get lots of data (e.g. ImageNet)

- Get lots of compute (e.g. CPU
cluster, GPUs)

- Cross-validate like crazy, train
models for 2-3 weeks on a GPU

- Researcher gradient descent
(RGD) or Graduate student
descent (GSD): get 100s of
researchers to each do this,
trying different network structures

Feed-forward Networks Network Training Error Backpropagation Deep Learning

Challenges

Interpretability:

“panda” “gibbon”

57.7% confidence 99.3% confidence

Feed-forward Networks Network Training Error Backpropagation DeeplLearning

Challenges

Data efficiency:
* ImageNet: 14 million images, 20000 categories
* AlphaStar: 200 years of gameplay

Challenges

Problem formulation (what are you trying to
predict?)

Choice of model and optimization algorithm
Data collection, post-processing

Feature selection

Deep Learning

Deep Learning

More information

- https://sites.google.com/site/
deeplearningsummerschool

- http://tutorial.caffe.berkeleyvision.org/
- ufldl.stanford.edu/eccvl0O-tutorial

- http://www.image-net.org/challenges/LSVRC/
2012 /supervision.pdf

- Courses: Deep Learning, Natural Language Processing,
Computer Vision

- Projectideas

+ Long short-term memory (LSTM) models for temporal data

 Learning embeddings (word2vec, FaceNet)

- Structured output (multiple outputs from a network)

- Zero-shot learning (learning to recognize new concepts
without training data)

- Transfer learning (use data from one domain/task, adapt to
another)

https://sites.google.com/site/deeplearningsummerschool
http://tutorial.caffe.berkeleyvision.org/
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Deep Learning

Conclusion

- Readings: Ch.5.1,5.2, 5.3

- Feed-forward networks can be used for regression or
classification

- Similar to linear models, except with adaptive non-linear
basis functions

- These allow us to do more than e.g. linear decision
boundaries

- Different error functions

- Learning is more difficult, error function not convex

- Use stochastic gradient descent, obtain (good?) local
minimum

- Backpropagation for efficient gradient computation

