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Neural Networks

• Neural networks arise from attempts to model  
human/animal brains

• Many models, many claims of biological plausibility

• We will focus on multi-layer perceptrons

• Mathematical properties rather than plausibility
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Applications of Neural Networks

• Many success stories for neural networks, old and new

• Credit card fraud detection

• Hand-written digit recognition

• Face detection

• Autonomous driving (CMU ALVINN)

• Object recognition

• Speech recognition
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Feed-forward Networks

• We have looked at generalized linear models of the form:

𝑦 𝒙,𝒘 = 𝑓 ෍

𝑗=1

𝑀

𝑤𝑗𝜙𝑗 𝒙

for fixed non-linear basis functions 𝜙 ⋅

• We now extend this model by allowing adaptive basis  

functions, and learning their parameters

• In feed-forward networks (a.k.a. multi-layer perceptrons)  

we let each basis function be another non-linear function of  

linear combination of the inputs:

𝜙𝑗 𝑥 = 𝑓 ෍

𝑗=1

𝑀

⋯
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Feed-forward Networks
• Starting with input x = (x1, . . . , xD), construct linear  

combinations:

𝑎𝑗 =෍

𝑖=1

𝐷

𝑤𝑗𝑖
1
𝑥𝑖 + 𝑥𝑗0

1

These 𝑎𝑗 are known as activations

• Pass through an activation function ℎ ⋅ to get output
𝑧𝑗 = ℎ 𝑎𝑗

• Model of an individual neuron

from Russell and Norvig, AIMA2e
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Activation Functions

• Can use a variety of activation functions

• Sigmoidal (S-shaped)

• Logistic sigmoid 1/(1 + exp −𝑎 ) (useful forbinary  

classification)

• Hyperbolic tangent tanh ⋅

• Radial basis function 𝑧𝑗 = σ𝑖 𝑥𝑖 − 𝑤𝑗𝑖
2

• Softmax

• Useful for multi-class classification

• Identity

• Useful for regression

• Threshold

• ...

• Needs to be differentiable for gradient-based learning  

(later)

• Can use different activation functions in each unit



Common choices of activation functions
Softplus:

log 1 + 𝑒𝑥

Hyperbolic tangent: 
tanh 𝑥

Rectified linear unit (ReLU): 
max 0, 𝑥

Key feature: easy to differentiate

Feed-forward Networks Deep Learning
Network Training Error Backpropagation

Activation Functions
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Feed-forward Networks

• Connect together a number of these units into a  feed-

forward network (DAG)

• Above shows a network with one layer of hidden units

• Implements function

𝑦𝑘 𝑥,𝑤 = ℎ 2 ෍

𝑗=1

𝑀

𝑤𝑘𝑗
2 ℎ 1 ෍

𝑖=1

𝐷

𝑤𝑖𝑗
1 𝑥𝑖 + 𝑤𝑗0

1 +𝑤𝑘0
2

hidden units

inputs outputs

𝑥𝐷

𝑥1

𝑥0

𝑦1

𝑦𝑘

𝑧1
1

𝑧0
1

𝑧𝑀
1

𝑤𝑀𝐷
1

𝑤𝑘𝑀
2

𝑤10
2
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Network Training
• Given a specified network structure, how do we set its  

parameters (weights)?

• As usual, we define a criterion to measure how well our  

network performs, optimize against it

• For regression, training data are 𝑥𝑛, 𝑡𝑛 , 𝑡𝑛 ∈ ℝ
• Squared error naturally arises:

𝐸 𝑤 = ෍

𝑛=1

𝑁

𝑦 𝑥𝑛 , 𝑤 − 𝑡𝑛
2

• For binary classification, this is another discriminative  
model, ML:

𝑝 𝒕|𝒘 =ෑ

𝑛=1

𝑁

𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛

𝐸 𝑤 = −෍

𝑛=1

𝑁

𝑡𝑛 ln 𝑦𝑛 + 1 − 𝑡𝑛 ln 1 − 𝑦𝑛
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Parameter Optimization

w1

E (w)

wA wB wC

w2 ∇E

• For either of these problems, the error function 𝐸(𝒘)
is nasty

• Nasty = non-convex

• Non-convex = has local minima
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A Non-Convex function



Aside: Optimization Program

• Very difficult to solve in general
• Trade-offs to consider: computation time, solution optimality

• Easy cases:
• Find global optimum for linear program: 𝑓, 𝑔𝑖 , ℎ𝑗 are linear

• Find global optimum for convex program: 𝑓, 𝑔𝑖 are convex, ℎ𝑗 is linear

• Find local optimum for nonlinear program: 𝑓, 𝑔𝑖 , ℎ𝑗 are differentiable

• Neural Networks: Nonlinear and unconstrained

minimize 𝑓 𝑥

subject to 𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… , 𝑛
ℎ𝑗 𝑥 = 0, 𝑗 = 1,… ,𝑚



• Convex function
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1− 𝜃 𝑓 𝑦 for all 𝑥, 𝑦
∈ ℝ𝑛, for all 𝜃 ∈ 0,1

• Sublevel sets of convex functions, 𝑥: 𝑓 𝑥 ≤ 𝐶 , 
are convex

• Convex shape 𝒞:
𝑥1 , 𝑥2 ∈ 𝒞, 𝜃 ∈ 0,1 ⇒ 𝜃𝑥1 + 1− 𝜃 𝑥2 ∈ 𝒞

• Superlevel sets of convex functions are not convex!

Convex Functions

𝑥 𝑦𝜃𝑥 + 1− 𝜃 𝑦

𝜃𝑓 𝑥 + 1− 𝜃 𝑓 𝑦

𝑓 𝜃𝑥 + 1 − 𝜃 𝑦



Convex Functions

• Convex function
𝑓 𝜃𝑥 + 1 − 𝜃 𝑦 ≤ 𝜃𝑓 𝑥 + 1− 𝜃 𝑓 𝑦 for all 𝑥, 𝑦
∈ ℝ𝑛, for all 𝜃 ∈ 0,1

• Sublevel sets of convex functions, 𝑥: 𝑓 𝑥 ≤ 𝐶 , 
are convex

• Convex shape 𝒞:
𝑥1 , 𝑥2 ∈ 𝒞, 𝜃 ∈ 0,1 ⇒ 𝜃𝑥1 + 1 − 𝜃 𝑥2 ∈ 𝒞

• Superlevel sets of convex functions are not convex!



Common Convex Functions on ℝ

• 𝑓 𝑥 = 𝑒𝑎𝑥 is convex for all 𝑥, 𝑎 ∈ ℝ

• 𝑓 𝑥 = 𝑥𝑎 is convex on 𝑥 > 0 if 𝑎 ≥ 1 or 𝑎 ≤ 0; concave if 0 < 𝑎 < 1

• 𝑓 𝑥 = log 𝑥 is concave

• 𝑓 𝑥 = 𝑥 log 𝑥 is convex for 𝑥 > 0 (or 𝑥 ≥ 0 if defined to be 0 when 𝑥 = 0)

𝑓 𝑥 = 𝑒𝑎𝑥 𝑓 𝑥 = 𝑥𝑎



Common Convex Functions on ℝ𝑛

• 𝑓 𝑥 = 𝐴𝑥 + 𝑏 is convex for any 𝐴, 𝑏

• Every norm on ℝ𝑛 is convex

• 𝑓 𝑥 = max 𝑥1, 𝑥2 , … , 𝑥𝑛 is convex

• 𝑓 𝑥 =
𝑥1
2

𝑥2
(for 𝑥2 > 0)

• Log-sum-exp softmax: 𝑓 𝑥 =
1

𝑘
log 𝑒𝑘𝑥1 + 𝑒𝑘𝑥2 +⋯+ 𝑒𝑘𝑥𝑛

• Geometric mean: 𝑓 𝑥 = ς𝑖=1
𝑛 𝑥𝑖

1

𝑛, 𝑥𝑖 > 0

𝑓 𝑥1, 𝑥2 = max 𝑥1, 𝑥2

𝑓 𝑥 =
𝑥1
2

𝑥2
𝑓 𝑥 =

1

5
log 𝑒5𝑥1 + 𝑒5𝑥2
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Descent Methods

• The typical strategy for optimization problems of this sort is  

a descent method:

𝒘 𝜏+1 = 𝒘 𝜏 + Δ𝒘 𝜏

• As we’ve seen before, these come in many flavours

• Gradient descent ∇𝐸 𝑤 𝜏

• Stochastic gradient descent ∇𝐸𝑛 𝒘 𝜏

• Newton-Raphson (second order)

• All of these can be used here, stochastic gradient descent  
is particularly effective

• Redundancy in training data, escaping local minima



Numerical Solution: Gradient Methods 

• Start from 𝑥0 and construct a sequence 𝑥𝑘
such that 𝑥𝑘 → 𝑥∗

• Calculate 𝑥𝑘+1 from 𝑥𝑘 by “going down the 
gradient”

• Unconstrained case: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓 𝑥 , 𝛼𝑘
> 0

• More generally, 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 for some 
𝑑 such that 

∇𝑓 𝑥𝑘 ⋅ 𝑑𝑘 < 0

• Tuning parameters: descent direction 𝑑𝑘 , and 
step size 𝛼𝑘



Numerical Solution: Gradient Methods 

• Start from 𝑥0 and construct a sequence 𝑥𝑘
such that 𝑥𝑘 → 𝑥∗

• Calculate 𝑥𝑘+1 from 𝑥𝑘 by “going down the 
gradient”

• Unconstrained case: 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓 𝑥 , 𝛼𝑘
> 0

• More generally, 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 for some 
𝑑 such that 

∇𝑓 𝑥𝑘 ⋅ 𝑑𝑘 < 0

• Tuning parameters: descent direction 𝑑𝑘 , and 
step size 𝛼𝑘



Descent Direction

• Steepest descent: 𝑑𝑘 = −∇𝑓 𝑥𝑘

• 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘∇𝑓 𝑥
• Simple but sometimes leads to slow convergence

• Newton’s method: 𝑑𝑘 = ∇2𝑓 𝑥𝑘
−1
∇𝑓 𝑥𝑘

• Minimize the quadratic approximation:

𝑓𝑘 𝑥 = 𝑓 𝑥𝑘 + ∇𝑓 𝑥𝑘
⊤
𝑥 − 𝑥𝑘 +

1

2
𝑥 − 𝑥𝑘

⊤
H𝑓 𝑥𝑘 𝑥 − 𝑥𝑘

• Set gradient to zero to obtain next iterate
∇𝑓𝑘 𝑥 = ∇𝑓 𝑥𝑘 + H𝑓 𝑥𝑘 𝑥 − 𝑥𝑘 = 0

⇒ 𝑥𝑘+1 = 𝑥𝑘 − H𝑓 𝑥𝑘
−1
∇𝑓 𝑥𝑘

• Fast convergence, but matrix inverse required
• Alternatively, use an algorithm to minimize a quadratic function



Step Size

• Recall 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 , with ∇𝑓 𝑥𝑘
⊤
𝑑𝑘 < 0

• Line search: choose 𝛼𝑘 = min
𝛼≥0

𝑓 𝑥𝑘 + 𝛼𝑘𝑑𝑘

• Requires minimization

• Constant step size: 𝛼𝑘 = 𝛼
• May not converge

• Diminishing step size: 𝛼𝑘 → 0
• Still need to explore all regions σ𝛼𝑘 = ∞

• For example: 𝛼𝑘 =
𝛼0

𝑘



Numerical Solution: Second Order Methods 

• Quadratize 𝑓 𝑥 :

• Convexify if needed, eg. by removing negative eigenvalues

𝑟𝑘 = 𝛻𝑓 𝑥𝑘
𝐵𝑘 = H𝑓 𝑥𝑘

𝒓𝒌
⊤
𝑑𝑥 +

1

2
𝑑𝑥
⊤𝑩𝒌𝑑𝑥minimize

𝑑𝑥
where 𝑑𝑥 ≔ 𝑥 − 𝑥𝑘 ,

minimize 𝑓 𝑥



Example

0.5𝑥4 + 0.8𝑥3 − 3𝑥2 − 2𝑥 + 5
subject to−3 ≤ 𝑥 ≤ 2
minimize
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Computing Gradients

• The function 𝑦 𝒙𝑛, 𝒘 implemented by a network
is complicated

• It isn’t obvious how to compute error function derivatives  

with respect to weights

• Numerical method for calculating error derivatives, use  

finite differences:

𝜕𝐸𝑛
𝜕𝑤𝑗𝑖

≈
𝐸𝑛 𝑤𝑗𝑖 + 𝜖 − 𝐸𝑛 𝑤𝑗𝑖 − 𝜖

2𝜖

• How much computation would this take with 𝑊 weights in  
the network?

• 𝑂 𝑊 per partial derivative (evaluation of 𝐸𝑛)

• 𝑂 𝑊 2 total per gradient descent step (there are 𝑊
partial derivatives)
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Feed-forward Networks

• Connect together a number of these units into a  

feed-forward network (DAG)

• Above shows a network with one layer of hidden units

• Implements function:

𝑦 𝑛 ,𝑘 𝑥𝑛, 𝑤 = ℎ 2 ෍

𝑗=1

𝑀

𝑤𝑘𝑗
2
ℎ 1 ෍

𝑖=1

𝐷

𝑤𝑗𝑖
1
𝑥 𝑛 ,𝑖 + 𝑤𝑗0

1
+ 𝑤𝑘0

2

𝑧 𝑛 ,𝑗

𝑎 𝑛 ,𝑗

hidden units

inputs outputs

𝑥𝐷

𝑥1

𝑥0

𝑦1

𝑦𝑘

𝑧1
1

𝑧0
1

𝑧𝑀
1

𝑤𝑀𝐷
1

𝑤𝑘𝑀
2

𝑤10
2
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Error Backpropagation

• Backprop is an efficient method for computing error

derivatives
𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝑚

• 𝑂 𝑊 to compute derivatives wrt all weights
• First, feed training example 𝑥𝑛 forward through the network,  

storing all activations 𝑎𝑗

• Calculating derivatives for weights connected to output  
nodes is easy

• e.g. For linear output nodes 𝑦𝑘 = σ𝑖𝑤𝑘𝑖
𝐿
𝑧 𝑛 ,𝑖
𝐿−1

:

𝜕𝐸𝑛

𝜕𝑤𝑘𝑖
𝐿
=

𝜕

𝜕𝑤𝑘𝑖
𝐿

1

2
𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘

2
= 𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘 𝑧 𝑛 ,𝑖

𝐿−1

• For hidden layers, propagate error backwards from the  

output nodes
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Error Backpropagation

𝐸 𝑤 =
1

2
෍

𝑛=1

𝑁

෍

𝑘

𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘
2
,

𝜕𝐸𝑛

𝜕𝑤𝑘𝑖
𝐿
=

𝜕

𝜕𝑤𝑘𝑖
𝐿

1

2
෍

𝑘′

𝑦 𝑛 ,𝑘′ − 𝑡 𝑛 ,𝑘′
2
= 𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘 𝑧 𝑛 ,𝑖

𝐿−1

𝑦 𝑛 ,𝑘 =෍

𝑖

𝑤𝑘𝑖
𝐿
𝑧 𝑛 ,𝑖
𝐿−1

𝑦 𝑛 ,𝑘 , 𝐸𝑛:

• 𝑛: data point
• 𝑘: component

𝑤𝑗𝑖
𝑚

:

• 𝑚: layer
• 𝑗: index matching output
• 𝑖: index matching input

𝐸𝑛 𝑤 =
1

2
෍

𝑘

𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘
2

hidden units

inputs outputs

𝑥𝐷

𝑥1

𝑥0

𝑦1

𝑦𝑘

𝑧1
1

𝑧0
1

𝑧𝑀
1

𝑤𝑀𝐷
1

𝑤𝑘𝑀
2

𝑤10
2

∗
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Chain Rule for Partial Derivatives

• A “reminder”

• For 𝑓 𝑥, 𝑦 , with 𝑓 differentiable wrt 𝑥 and 𝑦, and 𝑥 and𝑦
differentiable wrt 𝑢:

𝜕𝑓

𝜕𝑢
=
𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑢
+
𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑢
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Error Backpropagation
• We can write
𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝑚

=
𝜕

𝜕𝑤𝑗𝑖
𝑚
𝐸𝑛 𝑎 𝑛 ,1

𝑚 , 𝑎 𝑛 ,2
𝑚 , … , 𝑎 𝑛 ,𝐷

𝑚

• Using the chain rule:

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝑚

=
𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑗
𝑚

𝜕𝑎 𝑛 ,𝑗
𝑚

𝜕𝑤𝑗𝑖
𝑚

+෍

𝑘≠𝑗

𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑘
𝑚

𝜕𝑎 𝑛 ,𝑘
𝑚

𝜕𝑤𝑗𝑖
𝑚

where σ𝑘 ⋯ runs over all other nodes 𝑘 in the same layer 𝑚

• Since 𝑎 𝑛 ,𝑘
𝑚

does not depend on 𝑤𝑗𝑖
𝑚

, all terms in the summation go 

to 0:

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝑚

=
𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑗
𝑚

𝜕𝑎 𝑛 ,𝑗
𝑚

𝜕𝑤𝑗𝑖
𝑚

hidden units

inputs outputs

𝑥𝐷

𝑥1

𝑥0

𝑦1

𝑦𝑘

𝑧1
1

𝑧0
1

𝑧𝑀
1

𝑤𝑀𝐷
1

𝑤𝑘𝑀
2

𝑤10
2
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Error Backpropagation cont.

• Introduce error 𝛿 𝑛 ,𝑗
𝑚 ≔

𝜕𝐸𝑛

𝜕𝑎
𝑛 ,𝑗
𝑚

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝑚

= 𝛿 𝑛 ,𝑗
𝑚

𝜕𝑎 𝑛 ,𝑗
𝑚

𝜕𝑤𝑗𝑖
𝑚

• Other factor is

𝜕𝑎 𝑛 ,𝑗
𝑚

𝜕𝑤𝑗𝑖
𝑚

=
𝜕

𝜕𝑤𝑗𝑖
𝑚
෍

𝑘

𝑤𝑗𝑘
𝑚 𝑧𝑘

𝑚−1 = 𝑧𝑖
𝑚−1

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝑚

= 𝛿 𝑛 ,𝑗
𝑚

𝑧𝑖
𝑚−1

hidden units

inputs outputs

𝑥𝐷

𝑥1

𝑥0

𝑦1

𝑦𝑘

𝑧1
1

𝑧0
1

𝑧𝑀
1

𝑤𝑀𝐷
1

𝑤𝑘𝑀
2

𝑤10
2
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Error Backpropagation cont.

• Error 𝛿 𝑛 ,𝑗
𝑚

can also be computed using 

chain rule:

𝛿 𝑛 ,𝑗
𝑚 ≔

𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑗
𝑚

=෍

𝑘

𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑘
𝑚+1

𝜕𝑎 𝑛 ,𝑘
𝑚+1

𝜕𝑎 𝑛 ,𝑗
𝑚

where σ𝑘 ⋯ runs over all nodes 𝑘 in the layer after.

𝛿𝑘
𝑚+1

𝑎 𝑛 ,𝑘
𝑚+1

=෍

𝑖

𝑤𝑘𝑖
𝑚+1

𝑧 𝑛 ,𝑖
𝑚

=෍

𝑖

𝑤𝑘𝑖
𝑚+1

ℎ 𝑚 𝑎 𝑛 ,𝑖
𝑚

𝛿 𝑛 ,𝑗
𝑚

=෍

𝑘

𝛿 𝑛 ,𝑘
𝑚+1

𝑤𝑘𝑗
𝑚+1

ℎ 𝑚 ′
𝑎 𝑛 ,𝑗

𝑚
= ℎ 𝑚 ′

𝑎 𝑛 ,𝑗
𝑚

෍

𝑘

𝛿 𝑛 ,𝑘
𝑚+1

𝑤𝑘𝑗
𝑚+1

𝜕𝑎 𝑛 ,𝑘
𝑚+1

𝜕𝑎 𝑛 ,𝑗
𝑚

= 𝑤𝑘𝑗
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ℎ 𝑚 ′
𝑎 𝑛 ,𝑗

𝑚
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Error Backpropagation cont.

• Error 𝛿 𝑛 ,𝑗
𝑚

can also be computed using chain rule:

𝛿 𝑛 ,𝑗
𝑚

≔
𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑗
𝑚

=෍

𝑘

𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑘
𝑚+1

𝜕𝑎 𝑛 ,𝑘
𝑚+1

𝜕𝑎 𝑛 ,𝑗
𝑚

where σ𝑘 ⋯ runs over all nodes 𝑘 in the layer after.

• Eventually:

𝛿 𝑛 ,𝑗
𝑚 = ℎ 𝑚 ′

𝑎 𝑛 ,𝑗
𝑚 ෍

𝑘

𝛿 𝑛 ,𝑘
𝑚+1 𝑤𝑘𝑗

𝑚+1

• A weighted sum of the later error “caused” by this weight

𝛿𝑘
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Error Backpropagation cont.

• Above recursion relation needs last set of errors: 𝛿𝑗
𝐿

where σ𝑘 ⋯ runs over all nodes 𝑘 in the layer after.

• Eventually:

𝛿 𝑛 ,𝑗
𝑚

= ℎ 𝑚 ′
𝑎 𝑛 ,𝑗

𝑚
෍

𝑘

𝛿 𝑛 ,𝑘
𝑚+1

𝑤𝑗𝑘
𝑚+1

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝑚

= 𝛿 𝑛 ,𝑗
𝑚

𝑧𝑖
𝑚−1

𝜕𝐸𝑛

𝜕𝑤𝑗𝑖
𝐿
= 𝛿 𝑛 ,𝑗

𝐿
𝑧 𝑛 ,𝑖
𝐿−1

= 𝑦 𝑛 ,𝑗 − 𝑡 𝑛 ,𝑗 𝑧 𝑛 ,𝑖
𝐿−1

𝛿 𝑛 ,𝑗
𝐿

= 𝑦 𝑛 ,𝑗 − 𝑡 𝑛 ,𝑗

(from before ∗ )

(by comparison)

(by definition)
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Summary

𝑦 𝑛 ,𝑘 𝑥𝑛, 𝑤 = ℎ 𝑚+1 ෍

𝑗=1

𝑀

𝑤𝑗𝑘
𝑚+1

ℎ 𝑚 ෍

𝑖=1

𝐷

𝑤𝑖𝑗
𝑚
𝑧 𝑛 ,𝑖
𝑚−1

+ 𝑤0𝑗
𝑚

+ 𝑤𝑘0
𝑚+1

𝜕𝐸𝑛

𝜕𝑤𝑖𝑗
𝑚

= 𝛿 𝑛 ,𝑗
𝑚

𝑧 𝑛 ,𝑖
𝑚−1

,

Output Definition / forward propagation

Gradient computation / backpropagation

𝛿 𝑛 ,𝑗
𝑚

= ℎ 𝑚 ′
𝑎 𝑛 ,𝑗

𝑚
෍

𝑘

𝛿𝑘
𝑚+1

𝑤𝑗𝑘
𝑚+1

• Last layer:
𝜕𝐸𝑛

𝜕𝑤𝑖𝑘
𝐿
= 𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘 𝑧 𝑛 ,𝑖

𝐿−1

• Previous layers: Define

• Save 𝒛, 𝒂

𝛿 𝑛 ,𝑗
𝑚

≔
𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑗
𝑚

where

𝛿 𝑛 ,𝑗
𝐿

= 𝑦 𝑛 ,𝑗 − 𝑡 𝑛 ,𝑗

Starting from last layer,

Recursion:

𝑂 𝑊
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inputs outputs
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Summary

𝑦 𝑛 ,𝑘 𝑥𝑛, 𝑤 = ℎ 𝑚+1 ෍

𝑗=1

𝑀

𝑤𝑗𝑘
𝑚+1

ℎ 𝑚 ෍

𝑖=1

𝐷

𝑤𝑖𝑗
𝑚
𝑧 𝑛 ,𝑖
𝑚−1

+ 𝑤0𝑗
𝑚

+ 𝑤𝑘0
𝑚+1

𝜕𝐸𝑛

𝜕𝑤𝑖𝑗
𝑚

= 𝛿 𝑛 ,𝑗
𝑚

𝑧 𝑛 ,𝑖
𝑚−1

,

Output Definition / forward propagation

Gradient computation / backpropagation

𝛿 𝑛 ,𝑗
𝑚

= ℎ 𝑚 ′
𝑎 𝑛 ,𝑗

𝑚
෍

𝑘

𝛿𝑘
𝑚+1

𝑤𝑗𝑘
𝑚+1

• Last layer:
𝜕𝐸𝑛

𝜕𝑤𝑖𝑘
𝐿
= 𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘 𝑧 𝑛 ,𝑖

𝐿−1

• Previous layers: Define

• Save 𝒛, 𝒂

𝛿 𝑛 ,𝑗
𝑚

≔
𝜕𝐸𝑛

𝜕𝑎 𝑛 ,𝑗
𝑚

where

𝛿 𝑛 ,𝑗
𝐿

= 𝑦 𝑛 ,𝑗 − 𝑡 𝑛 ,𝑗

Starting from last layer,

Recursion:

𝑂 𝑊

Goes through one layer of weights

Goes through one layer of weights

𝑂 𝑊
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Descent Methods

• Gradient Descent:

𝒘 𝜏+1 = 𝒘 𝜏 − 𝜂 𝜏 ∇𝐸 𝑤 𝜏

• Stochastic Gradient Descent:

• 𝑛 chosen randomly

𝒘 𝜏+1 = 𝒘 𝜏 − 𝜂 𝜏 ∇𝐸𝑛 𝑤 𝜏

• A batch 𝒩 chosen randomly

𝒘 𝜏+1 = 𝒘 𝜏 − 𝜂 𝜏 ෍

𝑛∈𝒩

∇𝐸𝑛 𝑤 𝜏

• Error function:

• 𝑦 𝑥,𝑤 is a neural network, very complex

• Cannot solve argmin
𝑤

𝐸 𝑤 explicitly (like in linear 

regression)

𝐸 𝑤 =
1

2
෍

𝑛=1

𝑁

෍

𝑘

𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘
2
, 𝐸𝑛 𝑤 =

1

2
෍

𝑘

𝑦 𝑛 ,𝑘 − 𝑡 𝑛 ,𝑘
2
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Tensorflow Playground

• https://playground.tensorflow.org

https://playground.tensorflow.org/
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Deep Learning

• Collection of important techniques to improve  
performance:

• Multi-layer networks

• Convolutional networks, parameter tying

• Hinge activation functions (ReLU) for steeper gradients

• Momentum

• Drop-out regularization

• Sparsity

• Auto-encoders for unsupervised feature learning

• ...

• Scalability is key, can use lots of data since stochastic  

gradient descent is memory-efficient, can be parallelized
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Hand-written Digit Recognition

• MNIST - standard dataset for hand-written digit recognition

• 60000 training, 10000 test images
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LeNet-5, circa 1998

INPUT  
32x32

Convolutions SubsamplingConvolutions

C1: featuremaps  
6@28x28

Subsampling

S2: f.maps  
6@14x14

C5: layer  
120

C3: f. maps 16@10x10
S4: f. maps 16@5x5

Full connection

Full connection

Gaussian connections

F6: layer OUTPUT

84 10

• LeNet developed by Yann LeCun et al.

• Convolutional neural network

• Local receptive fields (5x5 connectivity)

• Subsampling (2x2)

• Shared weights (reuse same 5x5 “filter”)

• Breaking symmetry
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ImageNet

• ImageNet - standard dataset for object recognition in  
images (Russakovsky et al.)

• 1000 image categories, ≈1.2 million training images  

(ILSVRC 2013)
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GoogLeNet, circa 2014

• GoogLeNet developed by Szegedy et  

al., CVPR 2015

• Modern deep network

• ImageNet top-5 error rate of 6.67%  

(later versions even better)

• Comparable to human performance  

(especially for fine-grained categories)
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ResNet, circa 2015
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• ResNet developed by He et al., ICCV

2015

• 152 layers

• ImageNet top-5 error rate of 3.57%

• Better than human performance

(especially for fine-grained categories)



Deep Learning
Feed-forward Networks Network Training Error Backpropagation

Key Component 1: Convolutional Filters

• Share parameters across  

network

• Reduce total number of  

parameters

• Provide translation  

invariance, useful for visual  

recognition



Common Operations

• Fully connected (dot product)

• Convolution
• Translationally invariant

• Controls overfitting

• Pooling (fixed function)
• Down-sampling

• Controls overfitting

• Nonlinearity layer (fixed function)
• Activation functions, e.g. ReLU Stanford CS231n

towarddatascience.com



Example: Small VGG Net From Stanford CS231n



Neural Network Architectures

• Convolutional neural network (CNN)
• Has translational invariance properties from convolution

• Common used for computer vision

• Recurrent neural network RNN
• Has feedback loops to capture temporal or sequential 

information

• Useful for handwriting recognition, speech recognition, 
reinforcement learning

• Long short-term memory (LSTM): special type of RNN with 
advantages in numerical properties

• Others
• General feedforward networks, variational autoencoders 

(VAEs), conditional VAEs, generative adversarial networks



Training Neural Networks

• Data preprocessing
• Removing bad data

• Transform input data (e.g. rotating, stretching, adding noise)

• Training process (optimization algorithm)
• Choice of loss function (eg. L1 and L2 regularization)

• Dropout: randomly set neurons to zero in each training iteration

• Learning rate (step size) and other hyperparameter tuning

• Software packages: efficient gradient computation
• Caffe, Torch, Theano, TensorFlow
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Key Component 2: Rectified Linear Units (ReLUs)

• Vanishing gradient problem

• If derivatives very small, no/little

progress via stochastic gradient

descent

• Occurs with sigmoid function  

when activation is large in  

absolute value

• ReLU: ℎ 𝑎𝑗 = max 0, 𝑎𝑗

• Non-saturating, linear gradients  

(as long as non-negative  

activation on some training data)

• Sparsity inducing
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Key Component 3: Many, Many Layers

• ResNet: ≈152 layers (“shortcut  

connections”)

• GoogLeNet: ≈27 layers  

(“Inception” modules)

• VGG Net: 16-19 layers  

(Simonyan and Zisserman, 2014)

• AlexNet: 8 layers (Krizhevsky  et 

al., 2012)
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Key Component 3: Many, Many Layers

• ResNet: ≈152 layers (“shortcut  

connections”)

• GoogLeNet: ≈27 layers  

(“Inception” modules)

• VGG Net: 16-19 layers  

(Simonyan and Zisserman, 2014)

• AlexNet: 8 layers (Krizhevsky  et 

al., 2012)
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Key Component 4: Momentum

• Trick to escape plateaus / local minima

• Take exponential average of previous gradients

𝜕𝐸𝑛
𝜕𝑤𝑗𝑖

𝜏

=
𝜕𝐸𝑛
𝜕𝑤𝑗𝑖

𝜏

+ 𝛼
𝜕𝐸𝑛
𝜕𝑤𝑗𝑖

𝜏−1

• Maintains progress in previous direction
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Key Component 5: Asynchronous Stochastic Gradient  

Descent

• Big models won’t fit in memory

• Want to use compute clusters  

(e.g. 1000s of machines) to run  

stochastic gradient descent

• How to parallelize computation?

• Ignore synchronization across  
machines

• Just let each machine compute  

its own gradients and pass to a  

server storing current  

parameters

• Ignore the fact that these  

updates are inconsistent

• Seems to just work (e.g. Dean

et al. NIPS 2012)
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Key Component 6: Learning Rate Schedule

• How to set learning rate η?:

𝒘𝜏 = 𝒘𝜏−1 + 𝜂∇𝒘

• Option 1: Run until validation  

error plateaus. Drop learning rate  

by x%

• Option 2: Adagrad, adaptive  

gradient. Per-element learning  

rate set based on local geometry  

(Duchi et al. 2010)
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Key Component 7: Data Augmentation

• Augment data with additional  

synthetic variants (10x amount of  

data)

• Or just use synthetic data, e.g.  

Sintel animated movie (Butler et  

al. 2012)
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Key Component 8: Data and Compute

• Get lots of data (e.g. ImageNet)

• Get lots of compute (e.g. CPU  

cluster, GPUs)

• Cross-validate like crazy, train  

models for 2-3 weeks on a GPU

• Researcher gradient descent  

(RGD) or Graduate student  

descent (GSD): get 100s of  

researchers to each do this,  

trying different network structures
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Challenges

Interpretability:
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Challenges

Data efficiency:
• ImageNet: 14 million images, 20000 categories
• AlphaStar: 200 years of gameplay
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Challenges

• Problem formulation (what are you trying to 
predict?)

• Choice of model and optimization algorithm
• Data collection, post-processing
• Feature selection
• …
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More information

• https://sites.google.com/site/  

deeplearningsummerschool

• http://tutorial.caffe.berkeleyvision.org/

• ufldl.stanford.edu/eccv10-tutorial

• http://www.image-net.org/challenges/LSVRC/ 

2012/supervision.pdf

• Courses: Deep Learning, Natural Language Processing, 

Computer Vision

• Project ideas

• Long short-term memory (LSTM) models for temporal data

• Learning embeddings (word2vec, FaceNet)

• Structured output (multiple outputs from a network)

• Zero-shot learning (learning to recognize new concepts  

without training data)

• Transfer learning (use data from one domain/task, adapt to

another)

https://sites.google.com/site/deeplearningsummerschool
http://tutorial.caffe.berkeleyvision.org/
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Conclusion

• Readings: Ch. 5.1, 5.2, 5.3

• Feed-forward networks can be used for regression or  
classification

• Similar to linear models, except with adaptive non-linear  

basis functions

• These allow us to do more than e.g. linear decision  

boundaries

• Different error functions

• Learning is more difficult, error function not convex

• Use stochastic gradient descent, obtain (good?) local  

minimum

• Backpropagation for efficient gradient computation


