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Classification: Hand-written Digit Recognition

𝒙𝑖 = 𝑡𝑖 = 0,0, 0,1, 0, 0, 0, 0, 0, 0

• Each input vector classified into one of 𝐾 discreteclasses

• Denote classes by 𝒞𝑘

• Represent input image as a vector 𝒙𝑖 ∈ ℝ
784.

• We have target vector 𝒕𝑖 ∈ 0, 1 10

• Given a training set 𝒙1, 𝒕1 , … , 𝒙𝑁 , 𝒕𝑁 , learning problem  
is to construct a “good” function 𝒚(𝒙) from these.

• 𝑦:ℝ784 → ℝ10
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Generalized Linear Models

• Similar to previous chapter on linear models for regression,  

we will use a “linear” model for classification:

𝑦 𝒙 = 𝑓 𝒘⊤𝒙+𝑤0

• This is called a generalized linear model

• 𝑓 ⋅ is a fixed non-linear function
• e.g.

𝑓 𝑢 = ቊ
1, if 𝑢 ≥ 0
0, otherwise

• Decision boundary between classes will be linear function  

of 𝒙

• Can also apply non-linearity to 𝒙, as in 𝜙𝑖 𝒙 for regression
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Discriminant Functions with Two Classes

𝒘

𝒙

𝑦 > 0

• Start with 2 class problem,
𝑡𝑖 ∈ 0,1

• Simple linear discriminant

𝑦 𝒙 = 𝒘⊤𝒙 + 𝑤0

apply threshold function to get  

classification

𝑦 = 0
𝑦 < 0

ℛ2

ℛ1

𝑥2

𝑥1

𝑥⊥

𝑦 𝒙

𝒘

−𝑤0

𝒘
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Discriminant Functions with Two Classes

𝒘

𝒙

𝑦 > 0

• 𝑦 𝒙 = 𝒘⊤𝒙 +𝑤0
• Gradient of 𝑦 is 𝒘
• Constant 𝑦 values ⇒ parallel lines

• If 𝑦 = 0 (decision boundary), 

𝒘⊤𝒙 = −𝑤0 ⇒
𝒘

𝒘

⊤

𝑥 = −
𝑤0
𝒘

• In general, 
𝑦

𝒘
=

𝑤⊤𝑥

𝑤
+

𝑤0

𝑤
, or

𝒘

𝒘

⊤

𝑥 =
𝑦 𝒙

𝒘
−

𝑤0
𝒘

𝑦 = 0
𝑦 < 0

ℛ2

ℛ1

𝑥2

𝑥1

𝑥⊥

𝑦 𝒙

𝒘

−𝑤0

𝒘

𝒘

𝒘

⊤

𝑥
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Multiple Classes

?

?

• A linear discriminant between two classes separates with a  

hyperplane

• How to use this for multiple classes?

• One-versus-the-rest method: build 𝐾 − 1 classifiers,  

between 𝒞𝑘 and all others

• One-versus-one method: build 𝐾(𝐾 − 1)/2 classifiers,  

between all pairs

ℛ3

ℛ1

ℛ2

𝒞1

not 𝒞1 not 𝒞2

𝒞2

ℛ3

ℛ1

ℛ2

𝒞1
𝒞3

𝒞1

𝒞2

𝒞3

𝒞2
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Multiple Classes

• A solution is to build K linear functions:

assign 𝒙 to class argmax
𝑘

𝑦𝑘 𝒙

• Gives connected, convex decision regions

ℛ𝑘

ℛ𝑖

ℛ𝑗

𝒙𝐴

𝒙𝐵

ෝ𝒙

𝑦𝑘 𝒙 = 𝒘𝑘
⊤𝒙 + 𝑤𝑘0

ෝ𝒙 = 𝜆𝒙𝐴 + 1− 𝜆 𝒙𝐵
𝑦𝑘 ො𝑥 = 𝜆𝑦𝑘 𝒙𝐴 + 1 − 𝜆 𝑦𝑘 𝒙𝐵

⇒ 𝑦𝑘 ො𝑥 > 𝑦𝑗 ො𝑥 , ∀𝑗 ≠ 𝑘
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Least Squares for Classification

• How do we learn the decision boundaries 𝒘𝑘, 𝑤𝑘0 ?

• One approach is to use least squares, similar to regression

• Find 𝑾 to minimize squared error over all examples and all  

components of the label vector:

𝐸 𝑾 =
1

2
෍

𝑛=1

𝑁

෍

𝑘=1

𝐾

𝑦𝑘 𝒙𝑛 − 𝑡𝑛𝑘
2

• Some algebra, we get a solution using the pseudo-inverse  

as in regression
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Problems with Least Squares

• Looks okay... least squares
decision boundary

• Similar to logistic regression

decision boundary (more later)

• Gets worse by adding easy

points?!

• Why?

• If target value is 1, points far

from boundary will have high  

value, say 10; this is a large  

error so the boundary is moved
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More Least Squares Problems

−4 −2 0 2 4 6
−6
−6

6

4

2

0

−2

−4

• Easily separated by hyperplanes, but not found using least  

squares!

• We’ll address these problems later with better models

• First, a look at a different criterion for linear discriminant
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Fisher’s Linear Discriminant

• The two-class linear discriminant acts as a projection:

𝑦 = 𝒘𝑇𝒙 ≥ −𝑤0

followed by a threshold

• In which direction w should we project?

• One which separates classes “well”



Discriminant Functions GenerativeModels Discriminative Models

Fisher’s Linear Discriminant

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

• A natural idea would be to project in the direction of the  

line connecting class means

• However, problematic if classes have variance in this  

direction

• Fisher criterion: maximize ratio of inter-class separation  

(between) to intra-class variance (inside)



𝒘

𝒙

𝑦 > 0
𝑦 = 0

ℛ2

ℛ1

𝑥2

𝑥1

𝑥⊥

𝑦 𝒙

𝒘

−𝑤0

𝒘

𝒘

𝒘

⊤

𝑥
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𝑦 < 0

𝒘

𝑦 = 0

𝒘

𝑦 = 0

𝑥

𝑤⊤𝑥
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Math time - FLD

• Projection 𝒚𝑛 = 𝑤⊤𝒙𝑛

• Inter-class separation is distance between class means

(good):

• Intra-class variance (bad):

• Fisher criterion:

maximize wrt 𝒘

𝑚𝑘 =
1

𝑁𝑘
෍

𝑛∈𝒞𝑘

𝒘⊤𝒙𝑛

𝑠𝑘
2 = ෍

𝑛∈𝒞𝑘

𝑦𝑛 −𝑚𝑘
2

𝐽 𝒘 =
𝑚2 −𝑚1

2

𝑠1
2 + 𝑠2

2
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Math time - FLD

Between-class covariance:

𝑆𝐵 = 𝒎2 −𝒎1 𝒎2 −𝒎1
⊤

Within-class covariance:

Lots of math:

If covariance 𝑆𝑊 is isotropic, reduces to class mean difference  

vector

𝐽 𝒘 =
𝑚2 −𝑚1

2

𝑠1
2 + 𝑠2

2 =
𝒘⊤𝑆𝐵𝒘

𝒘⊤𝑆𝑊𝒘

𝑆𝑊 = ෍

𝑛∈𝒞1

𝒙𝑛 −𝒎𝟏 𝒙𝑛 −𝒎𝟏
⊤ + ෍

𝑛∈𝒞2

𝒙𝑛 −𝒎𝟐 𝒙𝑛 −𝒎𝟐
⊤

𝒘 ∝ 𝑆𝑊
−1 𝒎2 −𝒎1
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FLD Summary

• FLD is a dimensionality reduction technique (more later in  

the course)

• Criterion for choosing projection based on class labels

• Still suffers from outliers (e.g. earlier least squares  

example)
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Perceptrons

• Perceptrons is used to refer to many neural network  

structures (more coming up)

• The classic type is a fixed non-linear transformation of  

input, one layer of adaptive weights, and a threshold:

𝑦 𝒙 = 𝑓 𝒘⊤𝜙 𝒙

• Developed by Rosenblatt in the 50s

• The main difference compared to the methods we’ve seen  

so far is the learning algorithm
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Perceptron Learning

• Two class problem

• For ease of notation, we will use 𝑡 = 1 for class 𝒞1 and

𝑡 = −1 for class 𝒞2; we choose 𝑓 such that 𝑓 𝑎 = 1 if 𝑎
≥ 0 and 𝑓 𝑎 = −1 otherwise

• We saw that squared error was problematic

• Instead, we’d like to minimize the number of misclassified  
examples

• An example is mis-classified if 𝒘⊤𝜙 𝒙𝑛 𝑡𝑛 < 0

• Perceptron criterion:

𝐸𝑃 𝒘 = − ෍

𝑛∈ℳ

𝒘⊤𝝓 𝒙𝑛 𝑡𝑛

sum over mis-classified examples only
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Perceptron Learning Algorithm

• Minimize the error function using stochastic gradient  

descent (gradient descent per example):

𝒘 𝜏+1 = 𝒘 𝜏 − 𝜂∇𝐸𝑃 𝒘 = 𝒘 𝜏 + 𝜂𝜙 𝒙𝑛 𝑡𝑛

• Iterate over all training examples, only change 𝒘 if the  

example is mis-classified

• Guaranteed to converge if data are linearly separable

• Will not converge if not

• May take many iterations

• Sensitive to initialization

if incorrect



𝑤
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Perceptron Learning Illustration
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• Note there are many hyperplanes with 0 error
• Support vector machines have a nice way  of choosing one

𝜙1

𝜙2
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I2

Limitations of Perceptrons

• Perceptrons can only solve linearly separable problems in  
feature space

• Same as the other models in this chapter

• Canonical example of non-separable problem is X-OR

• Real datasets can look like this too

I1

1

?

0
0 1
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Probabilistic Generative Models

• Up to now we’ve looked at learning classification by  

choosing parameters to minimize an error function

• We’ll now develop a probabilistic approach

• With 2 classes, 𝒞1 and 𝒞2 :

Bayes’ Rule

Sum rule

Product rule

• In generative models we specify the distribution 𝑝 𝒙|𝒞𝑘
which generates the data for each class

𝑝 𝒞1|𝒙 =
𝑝 𝒙|𝒞1 𝑝 𝒞1

𝑝 𝒙

𝑝 𝒞1|𝒙 =
𝑝 𝒙|𝒞1 𝑝 𝒞1

𝑝 𝒙,𝒞𝟏 + 𝑝 𝒙,𝒞2

𝑝 𝒞1|𝒙 =
𝑝 𝒙|𝒞1 𝑝 𝒞1

𝑝 𝒙|𝒞𝟏 𝑝 𝒞1 + 𝑝 𝒙|𝒞2 𝑝 𝒞2
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Probabilistic Generative Models - Example

• Let’s say we observe 𝑥 which is the current temperature

• Determine if we are in Vancouver (𝒞1) or Honolulu (𝒞2)

• Generative model:

• 𝑝 𝒙|𝒞1 is distribution over typical temperatures

in Vancouver

•e.g. 𝑝 𝒙 𝒞1 = 𝒩 𝑥; 10, 5

• 𝑝 𝒙|𝒞2 is distribution over typical temperatures in Honolulu

• e.g. 𝑝 𝒙 𝒞1 = 𝒩 𝑥; 25, 5

• Class priors 𝑝 𝒞1 = 0.1, 𝑝 𝒞2 = 0.9

• 𝑝 𝒞1|𝑥 = 15 =
0.0484×0.1

0.0484×0.1+0.0108×0.9
≈ 0.33

𝑝 𝒞1|𝒙 =
𝑝 𝒙|𝒞1 𝑝 𝒞1

𝑝 𝒙|𝒞𝟏 𝑝 𝒞1 + 𝑝 𝒙|𝒞2 𝑝 𝒞2
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Generalized Linear Models

• We can write the classifier in another form

where

𝑝 𝒞1|𝒙 =
𝑝 𝒙|𝒞1 𝑝 𝒞1

𝑝 𝒙|𝒞𝟏 𝑝 𝒞1 + 𝑝 𝒙|𝒞2 𝑝 𝒞2

=
1

1 + exp −𝑎
≡ 𝜎 𝑎

𝑎 = ln
𝑝 𝒙|𝒞1 𝑝 𝒞1
𝑝 𝒙|𝒞2 𝑝 𝒞2

=
1

1 +
𝑝 𝒙|𝒞2 𝑝 𝒞2
𝑝 𝒙|𝒞𝟏 𝑝 𝒞1
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Logistic Sigmoid

−5 0 5
0

0.5

1

• The function is known as the logistic

sigmoid

• It squashes the real axis down to 0, 1

• It is continuous and differentiable

• It avoids the problems encountered with the too correct

least-squares error fitting

𝜎 𝑎 =
1

1 + exp −𝑎



Discriminant Functions GenerativeModels Discriminative Models

Multi-class Extension

• There is a generalization of the logistic sigmoid to 𝐾 > 2
classes:

where

• a.k.a. softmax function

• If some 𝑎𝑘 ≫ 𝑎𝑗, 𝑝 𝒞𝑘|𝒙 goes to 1

𝑝 𝒞𝑘|𝒙 =
𝑝 𝒙|𝒞𝑘 𝑝 𝒞𝑘

σ𝑗 𝑝 𝒙|𝒞𝑗 𝑝 𝒞𝑗

=
exp 𝑎𝑘

σ𝑗 exp 𝑎𝑗

𝑎𝑘 = ln𝑝 𝒙|𝒞𝑘 𝑝 𝒞𝑘
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Gaussian Class-Conditional Densities

• Back to that 𝑎 in the logistic sigmoid for 2 classes
• Let’s assume the class-conditional densities 𝑝 𝑥|𝒞𝑘 are

Gaussians, and have the same covariance matrix Σ:

• 𝑎 takes a simple form:

• Note that quadratic terms 𝒙⊤Σ−1𝒙 cancel

𝑝 𝒙|𝒞𝑘 =
1

2𝜋 𝐷/2 Σ 1/2
exp −

1

2
𝒙 − 𝝁𝑘

⊤Σ−1 𝒙 − 𝝁𝑘

𝑎 = ln
𝑝 𝒙|𝒞1 𝑝 𝒞1
𝑝 𝒙|𝒞2 𝑝 𝒞2

= 𝒘⊤𝒙 + 𝑤0
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Maximum Likelihood Learning

• We can fit the parameters to this model using maximum  
likelihood

• Parameters are 𝝁1, 𝝁2, Σ
−1, 𝑝 𝒞1 ≡ 𝜋, 𝑝 𝒞2 ≡ 1 − 𝜋

• Refer to as 𝜃

• For a datapoint 𝑥𝑛 from class 𝒞1 (𝑡𝑛 = 1):

𝑝 𝒙𝑛, 𝒞1 = 𝑝 𝒞1 𝑝 𝒙𝑛|𝒞1 = 𝜋𝒩 𝒙𝑛|𝝁1, Σ

• For a datapoint 𝑥𝑛 from class 𝒞2 (𝑡𝑛 =0):

𝑝 𝒙𝑛, 𝒞2 = 𝑝 𝒞2 𝑝 𝒙𝑛|𝒞2 = 1 − 𝜋 𝒩 𝒙𝑛|𝝁2, Σ
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Maximum Likelihood Learning

• The likelihood of the training data is:

• As usual, ln ⋅ is our friend:

• Maximize for each separately

𝑝 𝒕|𝜋, 𝝁1, 𝝁2, 𝚺 =ෑ

𝑛=1

𝑁

𝜋𝒩 𝒙𝑛|𝝁1, Σ
𝑡𝑛 1 − 𝜋 𝒩 𝒙𝑛|𝝁2, Σ

1−𝑡𝑛

𝑙 𝒕|𝜃 = ෍

𝑛=1

𝑁

𝑡𝑛 ln 𝜋 + 1 − 𝑡𝑛 ln 1 − 𝜋 + 𝑡𝑛 ln𝒩1 + 1 − 𝑡𝑛 ln𝒩2

𝜋 𝝁1, 𝝁2, Σ
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Maximum Likelihood Learning - Class Priors

• Maximization with respect to the class priors parameter π

is straightforward:

• 𝑁1 and 𝑁2 are the number of training points in each class

• Prior is simply the fraction of points in each class

𝜕

𝜕𝜋
𝑙 𝑡|𝜃 = ෍

𝑛=1

𝑁
𝑡𝑛
𝜋
−
1 − 𝑡𝑛
1 − 𝜋

⇒ 𝜋 =
𝑁1

𝑁1 +𝑁2
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Maximum Likelihood Learning - Gaussian Parameters

• The other parameters can also be found in the same  

fashion

• Class means:

• Means of training examples from each class

• Shared covariance matrix:

• Weighted average of class covariances

𝜇1 =
1

𝑁1
෍

𝑛=1

𝑁

𝑡𝑛𝒙𝑛

𝜇2 =
1

𝑁2
෍

𝑛=1

𝑁

1 − 𝑡𝑛 𝒙𝑛

Σ =
𝑁1
𝑁

1

𝑁1
෍

𝑛∈𝒞1

𝒙𝑛 − 𝝁1 𝒙𝑛 − 𝝁1
⊤ +

𝑁2
𝑁

1

𝑁2
෍

𝑛∈𝒞2

𝒙𝑛 − 𝝁2 𝒙𝑛 − 𝝁2
⊤
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Probabilistic Generative Models Summary

• Fitting Gaussian using ML criterion is sensitive to outliers

• Simple linear form for a in logistic sigmoid occurs for more  
than just Gaussian distributions

• Arises for any distribution in the exponential family, a large  

class of distributions
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Probabilistic Discriminative Models

• Generative model made assumptions about form of  
class-conditional distributions (e.g. Gaussian)

• Resulted in logistic sigmoid of linear function of 𝒙

• Discriminative model - explicitly use functional form

and find 𝒘 directly

• For the generative model we had 2𝑀 +𝑀(𝑀 +1)/2 + 1
parameters

• 𝑀 is dimensionality of 𝒙

• Discriminative model will have 𝑀+1 parameters

𝑝 𝒞1|𝒙 =
1

1 + exp −𝒘⊤𝒙 + 𝑤0

Means, variance, prior
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Generative vs. Discriminative

• Generative models

• Can generate synthetic

example data
• Perhaps accurate

classification is equivalent to  
accurate synthesis

• e.g. vision and graphics

• Tend to have more parameters

• Require good model of class  

distributions

• Discriminative models

• Only usable for classification

• Don’t solve a harder problem

than you need to

• Tend to have fewer parameters

• Require good model of

decision boundary
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Maximum Likelihood Learning - Discriminative Model

• As usual we can use the maximum likelihood criterion for  

learning

• Taking ln and derivative gives:

• This time no closed-form solution since 𝑦𝑛 = 𝜎 𝒘⊤𝒙

• Could use (stochastic) gradient descent

• But there’s a better iterative technique

𝑝 𝒕|𝒘 =ෑ

𝑛=1

𝑁

𝑦𝑛
𝑡𝑛 1 − 𝑦𝑛

1−𝑡𝑛 , where 𝑦𝑛 = 𝑝 𝒞1|𝒙𝑛

∇𝑙 𝒘 = ෍

𝑛=1

𝑁

𝑡𝑛 − 𝑦𝑛 𝒙𝑛
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Iterative Reweighted Least Squares

• Iterative reweighted least squares (IRLS) is a descent  
method

• As in gradient descent, start with an initial guess, improve it

• Gradient descent - take a step (how large?) in the gradient  

direction

• IRLS is a special case of a Newton-Raphson method

• Approximate function using second-order Taylor expansion:

• Closed-form solution to minimize this is straight-forward:  

quadratic, derivatives linear

• In IRLS this second-order Taylor expansion ends up being  
a weighted least-squares problem, as in the regression  
case from last week

• Hence the name IRLS

መ𝑓 𝒘+ 𝒗 = 𝑓 𝒘 + ∇𝑓 𝒘 ⊤ 𝒗 − 𝒘 +
1

2
𝒗 − 𝒘 ⊤𝐻𝑓 𝒘 𝒗 −𝒘
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Newton-Raphson

• Figure from Boyd and Vandenberghe, Convex Optimization

• Excellent reference, free for download online
http://www.stanford.edu/~boyd/cvxbook/

http://www.stanford.edu/%7Eboyd/cvxbook/
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Conclusion

• Readings: Ch. 4.1.1-4.1.4, 4.1.7, 4.2.1-4.2.2, 4.3.1-4.3.3

• Generalized linear models 𝑦 𝒙 = 𝑓 𝒘⊤𝒙 + 𝑤0
• Threshold/max function for f (·)

• Minimize with least squares

• Fisher criterion - class separation

• Perceptron criterion - mis-classified examples

• Probabilistic models: logistic sigmoid / softmax for 𝑓 ⋅

• Generative model - assume class conditional densities in  

exponential family; obtain sigmoid

• Discriminative model - directly model posterior using  

sigmoid (a. k. a. logistic regression, though classification)

• Can learn either using maximum likelihood

• All of these models are limited to linear decision  

boundaries in feature space


