◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

Linear Models for Classification

CMPT 419/726 Mo Chen SFU Computing Science Jan. 22, 2020

Bishop PRML Ch. 4

Classification: Hand-written Digit Recognition

$$x_i = 4$$

$$t_i = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)$$

- Each input vector classified into one of K discrete classes
 - · Denote classes by C_k
- Represent input image as a vector $x_i \in \mathbb{R}^{784}$.
- We have target vector $\mathbf{t}_i \in \{0, 1\}^{10}$
- Given a training set $\{(x_1, t_1), ..., (x_N, t_N)\}$, learning problem is to construct a "good" function y(x) from these.

•
$$y: \mathbb{R}^{784} \to \mathbb{R}^{10}$$

Generalized Linear Models

• Similar to previous chapter on linear models for regression, we will use a "linear" model for classification:

$$y(\boldsymbol{x}) = f(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + w_0)$$

- This is called a generalized linear model
- $f(\cdot)$ is a fixed non-linear function

• e.g.

$$f(u) = \begin{cases} 1, & \text{if } u \ge 0\\ 0, & \text{otherwise} \end{cases}$$

- Decision boundary between classes will be linear function of x
- Can also apply non-linearity to x, as in $\phi_i(x)$ for regression

Discriminative Models

Discriminant Functions

Generative Models

Discriminative Models

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Discriminative Models

Discriminant Functions

Generative Models

Discriminative Models

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Discriminant Functions with Two Classes

- Start with 2 class problem, $t_i \in \{0,1\}$
- Simple linear discriminant

$$y(\boldsymbol{x}) = \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x} + w_0$$

apply threshold function to get classification

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . 의식()

Discriminant Functions with Two Classes

- $y(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0$
 - Gradient of y is w
 - Constant y values \Rightarrow parallel lines

• If
$$y = 0$$
 (decision boundary),
 $w^{\mathsf{T}}x = -w_0 \Rightarrow \left(\frac{w}{\|w\|}\right)^{\mathsf{T}}x = -\frac{w_0}{\|w\|}$

• In general,
$$\frac{y}{\|w\|} = \frac{w^T x}{\|w\|} + \frac{w_0}{\|w\|}$$
, or
 $\left(\frac{w}{\|w\|}\right)^T x = \frac{y(x)}{\|w\|} - \frac{w_0}{\|w\|}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

- A linear discriminant between two classes separates with a hyperplane
- · How to use this for multiple classes?
- One-versus-the-rest method: build K 1 classifiers, between C_k and all others
- One-versus-one method: build K(K-1)/2 classifiers, between all pairs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

• A solution is to build *K* linear functions:

$$y_k(\boldsymbol{x}) = \boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x} + w_{k0}$$

assign x to class $\arg \max_{k} y_k(x)$

• Gives connected, convex decision regions

$$\begin{aligned} \widehat{\boldsymbol{x}} &= \lambda \boldsymbol{x}_A + (1 - \lambda) \boldsymbol{x}_B \\ \boldsymbol{y}_k(\widehat{\boldsymbol{x}}) &= \lambda \boldsymbol{y}_k(\boldsymbol{x}_A) + (1 - \lambda) \boldsymbol{y}_k(\boldsymbol{x}_B) \\ \Rightarrow \boldsymbol{y}_k(\widehat{\boldsymbol{x}}) > \boldsymbol{y}_j(\widehat{\boldsymbol{x}}), \quad \forall j \neq k \end{aligned}$$

Least Squares for Classification

- How do we learn the decision boundaries (w_k, w_{k0}) ?
- · One approach is to use least squares, similar to regression
- Find *W* to minimize squared error over all examples and all components of the label vector:

$$E(\boldsymbol{W}) = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (y_k(\boldsymbol{x}_n) - t_{nk})^2$$

 Some algebra, we get a solution using the pseudo-inverse as in regression

Problems with Least Squares

- Looks okay... least squares decision boundary
 - Similar to logistic regression decision boundary (more later)
- Gets worse by adding easy points?!
- Why?
 - If target value is 1, points far from boundary will have high value, say 10; this is a large error so the boundary is moved

・ロト ・ 日 ・ ・ 日 ・ ・ 日

More Least Squares Problems

- Easily separated by hyperplanes, but not found using least squares!
- · We'll address these problems later with better models
- · First, a look at a different criterion for linear discriminant

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . 의식()

Fisher's Linear Discriminant

• The two-class linear discriminant acts as a projection: $y = w^T x \ge -w_0$

followed by a threshold

- In which direction w should we project?
- · One which separates classes "well"

Fisher's Linear Discriminant

- A natural idea would be to project in the direction of the line connecting class means
- However, problematic if classes have variance in this direction
- Fisher criterion: maximize ratio of inter-class separation (between) to intra-class variance (inside)

-2 2 6

Math time - FLD

- Projection $y_n = w^{\mathsf{T}} x_n$
- Inter-class separation is distance between class means (good):

$$m_k = \frac{1}{N_k} \sum_{n \in \mathcal{C}_k} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n$$

Intra-class variance (bad):

$$s_k^2 = \sum_{n \in \mathcal{C}_k} (y_n - m_k)^2$$

Fisher criterion:

$$J(\mathbf{w}) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2}$$

maximize wrt w

・ロト・(部)・(目)・(日)・(日)・(日)

Math time - FLD

$$J(w) = \frac{(m_2 - m_1)^2}{s_1^2 + s_2^2} = \frac{w^{\mathsf{T}} S_B w}{w^{\mathsf{T}} S_W w}$$

Between-class covariance: $S_B = (\boldsymbol{m}_2 - \boldsymbol{m}_1)(\boldsymbol{m}_2 - \boldsymbol{m}_1)^{\mathsf{T}}$

Within-class covariance:

$$S_W = \sum_{n \in \mathcal{C}_1} (\boldsymbol{x}_n - \boldsymbol{m}_1) (\boldsymbol{x}_n - \boldsymbol{m}_1)^\top + \sum_{n \in \mathcal{C}_2} (\boldsymbol{x}_n - \boldsymbol{m}_2) (\boldsymbol{x}_n - \boldsymbol{m}_2)^\top$$

Lots of math:

$$\boldsymbol{w} \propto S_W^{-1}(\boldsymbol{m}_2 - \boldsymbol{m}_1)$$

If covariance S_W is isotropic, reduces to class mean difference vector

FLD Summary

- FLD is a dimensionality reduction technique (more later in the course)
- Criterion for choosing projection based on class labels
 - Still suffers from outliers (e.g. earlier least squares example)

Perceptrons

- Perceptrons is used to refer to many neural network structures (more coming up)
- The classic type is a fixed non-linear transformation of input, one layer of adaptive weights, and a threshold:

$$y(\boldsymbol{x}) = f(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{\phi}(\boldsymbol{x}))$$

- Developed by Rosenblatt in the 50s
- The main difference compared to the methods we've seen so far is the learning algorithm

Perceptron Learning

- Two class problem
- For ease of notation, we will use t = 1 for class C_1 and t = -1 for class C_2 ; we choose f such that f(a) = 1 if $a \ge 0$ and f(a) = -1 otherwise
- · We saw that squared error was problematic
- Instead, we'd like to minimize the number of misclassified examples
 - An example is mis-classified if $w^{\mathsf{T}}\phi(x_n)t_n < 0$
 - · Perceptron criterion:

$$E_P(\boldsymbol{w}) = -\sum_{n \in \mathcal{M}} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) t_n$$

sum over mis-classified examples only

Perceptron Learning Algorithm

 Minimize the error function using stochastic gradient descent (gradient descent per example):

$$\boldsymbol{w}^{(\tau+1)} = \boldsymbol{w}^{(\tau)} - \eta \nabla E_P(\boldsymbol{w}) = \boldsymbol{w}^{(\tau)} + \underbrace{\eta \phi(\boldsymbol{x}_n) t_n}_{\text{if incorrect}}$$

- Iterate over all training examples, only change w if the example is mis-classified
- · Guaranteed to converge if data are linearly separable
- Will not converge if not
- May take many iterations
- Sensitive to initialization

Perceptron Learning Illustration

Note there are many hyperplanes with 0 error

· Support vector machines have a nice way of choosing one

・ロト ・回ト ・ヨト ・ヨト

- 2

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . 의식()

Limitations of Perceptrons

- Perceptrons can only solve linearly separable problems in feature space
 - · Same as the other models in this chapter
- · Canonical example of non-separable problem is X-OR
 - · Real datasets can look like this too

Discriminative Models

Discriminant Functions

Generative Models

Discriminative Models

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Probabilistic Generative Models

- Up to now we've looked at learning classification by choosing parameters to minimize an error function
- · We'll now develop a probabilistic approach
- + With 2 classes, \mathcal{C}_1 and \mathcal{C}_2 :

$$p(\mathcal{C}_{1}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x})}$$
Bayes' Rule
$$p(\mathcal{C}_{1}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x},\mathcal{C}_{1}) + p(\mathbf{x},\mathcal{C}_{2})}$$
Sum rule
$$p(\mathcal{C}_{1}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1})}{p(\mathbf{x}|\mathcal{C}_{1})p(\mathcal{C}_{1}) + p(\mathbf{x}|\mathcal{C}_{2})p(\mathcal{C}_{2})}$$
Product rule

• In generative models we specify the distribution $p(x|C_k)$ which generates the data for each class

Probabilistic Generative Models - Example

- · Let's say we observe x which is the current temperature
- Determine if we are in Vancouver (C_1) or Honolulu (C_2)
- Generative model:

$$p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

- $\cdot p(\mathbf{x}|\mathcal{C}_1)$ is distribution over typical temperatures in Vancouver
 - e.g. $p(x|C_1) = \mathcal{N}(x; 10, 5)$
- · $p(\mathbf{x}|\mathcal{C}_2)$ is distribution over typical temperatures in Honolulu
 - e.g. $p(x|C_1) = \mathcal{N}(x; 25, 5)$
- Class priors $p(C_1) = 0.1, p(C_2) = 0.9$

•
$$p(\mathcal{C}_1|x=15) = \frac{0.0484 \times 0.1}{0.0484 \times 0.1 + 0.0108 \times 0.9} \approx 0.33$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generalized Linear Models

· We can write the classifier in another form

$$p(C_{1}|\mathbf{x}) = \frac{p(\mathbf{x}|C_{1})p(C_{1})}{p(\mathbf{x}|C_{1})p(C_{1}) + p(\mathbf{x}|C_{2})p(C_{2})}$$
$$= \frac{1}{1 + \frac{p(\mathbf{x}|C_{2})p(C_{2})}{p(\mathbf{x}|C_{1})p(C_{1})}}$$
$$= \frac{1}{1 + \exp(-a)} \equiv \sigma(a)$$
where $a = \ln \frac{p(\mathbf{x}|C_{1})p(C_{1})}{p(\mathbf{x}|C_{2})p(C_{2})}$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . 의식()

Logistic Sigmoid

- The function $\sigma(a) = \frac{1}{1 + \exp(-a)}$ is known as the logistic sigmoid
- It squashes the real axis down to [0, 1]
- · It is continuous and differentiable
- It avoids the problems encountered with the *too correct* least-squares error fitting

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

Multi-class Extension

• There is a generalization of the logistic sigmoid to K > 2 classes:

$$p(\mathcal{C}_{k}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_{k})p(\mathcal{C}_{k})}{\sum_{j} p(\mathbf{x}|\mathcal{C}_{j})p(\mathcal{C}_{j})}$$
$$= \frac{\exp(a_{k})}{\sum_{j} \exp(a_{j})}$$
where $a_{k} = \ln p(\mathbf{x}|\mathcal{C}_{k})p(\mathcal{C}_{k})$

- a.k.a. softmax function
 - If some $a_k \gg a_j$, $p(\mathcal{C}_k | \mathbf{x})$ goes to 1

- Back to that a in the logistic sigmoid for 2 classes
- Let's assume the class-conditional densities $p(x|C_k)$ are Gaussians, and have the same covariance matrix Σ :

$$p(\boldsymbol{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2} |\Sigma|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_k)^{\mathsf{T}} \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_k)\right\}$$

a takes a simple form:

$$a = \ln \frac{p(\boldsymbol{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\boldsymbol{x}|\mathcal{C}_2)p(\mathcal{C}_2)} = \boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + w_0$$

• Note that quadratic terms $x^{\mathsf{T}}\Sigma^{-1}x$ cancel

Maximum Likelihood Learning

- We can fit the parameters to this model using maximum likelihood
 - Parameters are $\mu_1, \mu_2, \Sigma^{-1}, p(\mathcal{C}_1) \equiv \pi, p(\mathcal{C}_2) \equiv 1 \pi$
 - · Refer to as θ
- For a datapoint x_n from class C_1 ($t_n = 1$):

$$p(\boldsymbol{x}_n, \mathcal{C}_1) = p(\mathcal{C}_1)p(\boldsymbol{x}_n | \mathcal{C}_1) = \pi \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma})$$

• For a datapoint x_n from class C_2 ($t_n = 0$):

$$p(\boldsymbol{x}_n, \mathcal{C}_2) = p(\mathcal{C}_2)p(\boldsymbol{x}_n | \mathcal{C}_2) = (1 - \pi)\mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_2, \boldsymbol{\Sigma})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シののの

Maximum Likelihood Learning

The likelihood of the training data is:

$$p(\boldsymbol{t}|\boldsymbol{\pi},\boldsymbol{\mu}_1,\boldsymbol{\mu}_2,\boldsymbol{\Sigma}) = \prod_{n=1}^{N} [\boldsymbol{\pi}\mathcal{N}(\boldsymbol{x}_n|\boldsymbol{\mu}_1,\boldsymbol{\Sigma})]^{t_n} [(1-\boldsymbol{\pi})\mathcal{N}(\boldsymbol{x}_n|\boldsymbol{\mu}_2,\boldsymbol{\Sigma})]^{1-t_n}$$

• As usual, $\ln(\cdot)$ is our friend:

$$l(\mathbf{t}|\theta) = \sum_{n=1}^{N} (\underbrace{t_n \ln \pi + (1 - t_n) \ln(1 - \pi)}_{\pi} + \underbrace{t_n \ln \mathcal{N}_1 + (1 - t_n) \ln \mathcal{N}_2}_{\mu_1, \mu_2, \Sigma})$$

Maximize for each separately

・ロト・日本・モト・モト モー わらぐ

Maximum Likelihood Learning - Class Priors

 Maximization with respect to the class priors parameter π is straightforward:

$$\frac{\partial}{\partial \pi} l(t|\theta) = \sum_{n=1}^{N} \left(\frac{t_n}{\pi} - \frac{1 - t_n}{1 - \pi} \right)$$
$$\Rightarrow \pi = \frac{N_1}{N_1 + N_2}$$

- N_1 and N_2 are the number of training points in each class
- Prior is simply the fraction of points in each class

Maximum Likelihood Learning - Gaussian Parameters

- The other parameters can also be found in the same fashion
- Class means:

$$\mu_1 = \frac{1}{N_1} \sum_{n=1}^N t_n x_n$$
$$\mu_2 = \frac{1}{N_2} \sum_{n=1}^N (1 - t_n) x_n$$

- · Means of training examples from each class
- · Shared covariance matrix:

$$\Sigma = \frac{N_1}{N} \frac{1}{N_1} \sum_{n \in \mathcal{C}_1} (\mathbf{x}_n - \boldsymbol{\mu}_1) (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathsf{T}} + \frac{N_2}{N} \frac{1}{N_2} \sum_{n \in \mathcal{C}_2} (\mathbf{x}_n - \boldsymbol{\mu}_2) (\mathbf{x}_n - \boldsymbol{\mu}_2)^{\mathsf{T}}$$

Weighted average of class covariances

・ロト・日本・モト・モト モー めんぐ

Probabilistic Generative Models Summary

- Fitting Gaussian using ML criterion is sensitive to outliers
- Simple linear form for *a* in logistic sigmoid occurs for more than just Gaussian distributions
 - Arises for any distribution in the exponential family, a large class of distributions

Discriminative Models

Discriminant Functions

Generative Models

Discriminative Models

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Probabilistic Discriminative Models

- Generative model made assumptions about form of class-conditional distributions (e.g. Gaussian)
 - · Resulted in logistic sigmoid of linear function of x
- · Discriminative model explicitly use functional form

$$p(\mathcal{C}_1|\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x} + \boldsymbol{w}_0)}$$

and find w directly

- For the generative model we had 2M + M(M + 1)/2 + 1parameters Means, variance, prior
 - \cdot *M* is dimensionality of *x*
- Discriminative model will have M + 1 parameters

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Generative vs. Discriminative

- Generative models
 - Can generate synthetic example data
 - Perhaps accurate classification is equivalent to accurate synthesis
 - e.g. vision and graphics
 - Tend to have more parameters
 - Require good model of class distributions

- Discriminative models
 - Only usable for classification
 - Don't solve a harder problem than you need to
 - · Tend to have fewer parameters

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . 의식()

 Require good model of decision boundary

Maximum Likelihood Learning - Discriminative Model

 As usual we can use the maximum likelihood criterion for learning

$$p(t|w) = \prod_{n=1}^{N} y_n^{t_n} \{1 - y_n\}^{1-t_n}$$
, where $y_n = p(C_1|x_n)$

Taking In and derivative gives:

$$\nabla l(\boldsymbol{w}) = \sum_{n=1}^{N} (t_n - y_n) \boldsymbol{x}_n$$

- This time no closed-form solution since $y_n = \sigma(\mathbf{w}^T \mathbf{x})$
- · Could use (stochastic) gradient descent
 - · But there's a better iterative technique

Iterative Reweighted Least Squares

- Iterative reweighted least squares (IRLS) is a descent method
 - · As in gradient descent, start with an initial guess, improve it
 - Gradient descent take a step (how large?) in the gradient direction
- · IRLS is a special case of a Newton-Raphson method
 - · Approximate function using second-order Taylor expansion:

$$\hat{f}(\boldsymbol{w}+\boldsymbol{v}) = f(\boldsymbol{w}) + \nabla f(\boldsymbol{w})^{\mathsf{T}}(\boldsymbol{v}-\boldsymbol{w}) + \frac{1}{2}(\boldsymbol{v}-\boldsymbol{w})^{\mathsf{T}}Hf(\boldsymbol{w})(\boldsymbol{v}-\boldsymbol{w})$$

- Closed-form solution to minimize this is straight-forward: quadratic, derivatives linear
- In IRLS this second-order Taylor expansion ends up being a weighted least-squares problem, as in the regression case from last week
 - · Hence the name IRLS

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Newton-Raphson

- · Figure from Boyd and Vandenberghe, Convex Optimization
 - Excellent reference, free for download online http://www.stanford.edu/~boyd/cvxbook/

Conclusion

- · Readings: Ch. 4.1.1-4.1.4, 4.1.7, 4.2.1-4.2.2, 4.3.1-4.3.3
- Generalized linear models $y(\mathbf{x}) = f(\mathbf{w}^{\mathsf{T}}\mathbf{x} + w_0)$
- Threshold/max function for $f(\cdot)$
 - · Minimize with least squares
 - Fisher criterion class separation
 - · Perceptron criterion mis-classified examples
- Probabilistic models: logistic sigmoid / softmax for $f(\cdot)$
 - Generative model assume class conditional densities in exponential family; obtain sigmoid
 - Discriminative model directly model posterior using sigmoid (a. k. a. logistic regression, though classification)
 - · Can learn either using maximum likelihood
- All of these models are limited to linear decision boundaries in feature space