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Regression

• Given training set { 𝒙1 , 𝒕1 , … , 𝒙𝑁 , 𝒕𝑁 }

• 𝒕𝑖 is continuous: regression

• For now, assume 𝒕𝑖 ∈ ℝ,𝒙𝑖 ∈ ℝ
𝐷

• E.g. 𝒕𝑖 is stock price, 𝒙𝑖 contains company profit, debt, cash  

flow, gross sales, number of spam emails sent, …
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Linear Functions

• A function 𝑓 ⋅ is linear if

𝑓 𝛼𝑢 + 𝛽𝑣 = 𝛼𝑓 𝑢 + 𝛽𝑓 𝑣

• Linear functions will lead to simple algorithms, so let’s see  

what we can do with them
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Linear Regression

• Simplest linear model for regression

𝑦 𝒙,𝒘 = 𝑤0 +𝑤1𝑥1 + 𝑤2𝑥2 +⋯+ 𝑤𝐷𝑥𝐷

• Remember, we’re learning 𝒘
• Set 𝒘 so that 𝑦 𝒙,𝒘 aligns with target value in training data

• This is a very simple model, limited in what it can do

0 1

−1

0

1
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Linear Basis Function Models

• Simplest linear model

𝑦 𝒙,𝒘 = 𝑤0 +𝑤1𝑥1 + 𝑤2𝑥2 +⋯+ 𝑤𝐷𝑥𝐷

was linear in 𝒙 (*) and 𝒘

• Linearity in 𝒘 is what will be important for simple algorithms

• Extend to include fixed non-linear functions of data

𝑦 𝒙,𝒘 = 𝑤0 + 𝑤1𝜙1 𝒙 + 𝑤2𝜙2 𝒙 + ⋯+ 𝑤𝑀−1𝜙𝑀−1 𝒙

• Linear combinations of these basis functions also linear in  

parameters
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Linear Basis Function Models

• Bias parameter allows fixed offset in data

𝑦 𝒙,𝒘 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+ 𝑤𝐷𝑥𝐷

• Think of simple 1-D x:

𝑦 𝒙,𝒘 = 𝑤0 + 𝑤1𝑥1

For notational convenience, define 𝜙0 𝒙 = 1:

𝑦 𝒙, 𝒘 = 

𝑗=0

𝑀−1

𝑤𝑗𝜙𝑗 𝑥 = 𝑤⊤𝝓(𝒙)

intercept slope

bias
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Linear Basis Function Models

• Polynomial regression is an example of this

• Order 𝑀 polynomial regression, 𝜙𝑗 𝑥 =?

• 𝜙𝑗 𝑥 = 𝑥𝑗:

𝑦 𝑥,𝒘 = 𝑤0𝑥
0 + 𝑤1𝑥

1 +⋯+𝑤𝑀𝑥
𝑀

• Function for regression 𝑦 𝒙,𝒘 is non-linear function of

𝒙,  but linear in 𝒘:

𝑦 𝒙, 𝒘 = 

𝑗=0

𝑀−1

𝑤𝑗𝜙𝑗 𝑥 = 𝑤⊤𝝓(𝒙)
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Basis Functions: Feature Functions

• Often we extract features from 𝒙

• An intuitve way to think of 𝜙𝑗 𝒙 is as feature functions

• E.g. Automatic CMPT 726 project report grading system

• 𝒙 is text of report: In this project we apply the  

algorithm of Mori [2] to recognizing blue  

objects. We test this algorithm on  

pictures of you and I from my holiday photo  

collection. ...

• 𝜙1 𝒙 is count of occurrences of Mori [

• 𝜙2 𝒙 is count of occurrences of of you and I

• Regression grade 𝑦 𝒙,𝒘 = 20𝜙1 𝒙 − 10𝜙2 𝒙
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Other Non-linear Basis Functions
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• Polynomial: 𝜙𝑗 𝑥 = 𝑥𝑗

• Gaussians: 𝜙𝑗 𝑥 = exp −
𝑥−𝜇𝑗

2

2𝑠2

• Sigmoidal: 𝜙𝑗 𝑥 =
1

1+exp
𝜇𝑗−𝑥

𝑠
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Example - Gaussian Basis Functions: Temperature

• 𝜇1 = Vancouver, 𝜇2 = San Francisco, 𝜇3 = Oakland

• Temperature in x = Seattle? 

𝑦 𝑥,𝑤 = 𝑤1 exp −
𝑥 − 𝜇1

2

2𝑠2
+𝑤2 exp −

𝑥 − 𝜇2
2

2𝑠2
+𝑤3 exp −

𝑥 − 𝜇3
2

2𝑠2

• Compute distances to all 𝜇, 𝑦 𝑥,𝑤 ≈ 𝑤1
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Example - Gaussian Basis Functions: 726 Report  

Grading

• Define:

• 𝜇1 = Crime andPunishment

• 𝜇2 = AnimalFarm

• 𝜇3 = Some paper byMori

• Learn weights:

• 𝑤1 =?
• 𝑤2 =?
• 𝑤3 =?

• Grade a project report 𝒙:

• Measure similarity of 𝒙 to each 𝜇𝑗, Gaussian, with weights:

𝑦 𝒙,𝒘 = 𝑤1 exp −
𝑥 − 𝜇1

2

2𝑠2
+𝑤2 exp −

𝑥 − 𝜇2
2

2𝑠2
+𝑤3 exp −

𝑥 − 𝜇3
2

2𝑠2

• The Gaussian basis function models end up similar to  

template matching
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Example - Gaussian Basis Functions

• Could define exp −
𝑥−𝜇1

2

2𝑠2

• Gaussian around each training data point 𝑥𝑗, 𝑁 of them

• Could use for modelling temperature or resource
availability at spatial location 𝑥

• Overfitting - interpolates data

• Example of a kernel method



Regression Linear Basis Function Models Loss Functions for Regression Finding Optimal Weights Regularization Bayesian Lin

Outline

Regression

Linear Basis Function Models  

Loss Functions for Regression  

Finding Optimal Weights  

Regularization

Bayesian Linear Regression



Regression Linear Basis Function Models Loss Functions for Regression Finding Optimal Weights Regularization Bayesian Lin

Loss Functions for Regression

• We want to find the “best” set of coefficients w

• Recall, one way to define “best” was minimizing squared  

error:

𝐸 𝑤 =
1

2


𝑛=1

𝑁

𝑦 𝑥𝑛, 𝒘 − 𝑡𝑛
2

• We will now look at another way, based on maximum

likelihood
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Gaussian Noise Model for Regression

• We are provided with a training set 𝒙𝑖, 𝑡𝑖

• Let’s assume 𝑡 arises from a deterministic function plus  

Gassian distributed (with precision 𝛽) noise:

𝑡 = 𝑦 𝒙,𝒘 + 𝜖

• The probability of observing a target value 𝑡 is then:

𝑝 𝑡|𝒙,𝒘, 𝛽 = 𝒩 𝑡|𝑦 𝒙,𝒘 , 𝛽−1

• Notation: 𝒩 𝑥 𝜇, 𝜎2 ; x drawn from Gaussian with mean 𝜇,  

variance 𝜎2
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Gaussian Noise Model for Regression

• The probability of observing a target value 𝑡 is then:

𝑝 𝑡|𝒙,𝒘, 𝛽 = 𝒩 𝑡|𝑦 𝒙,𝒘 , 𝛽−1

• Notation: 𝒩 𝑥 𝜇, 𝜎2  ;x drawn from Gaussian with mean 𝜇,  

variance 𝜎2

• If 𝑥~𝒩 𝑥 𝜇, 𝜎2 , then

𝑝 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎
𝑒
−
𝑥−𝜇 2

2𝜎2
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Maximum Likelihood for Regression

• The likelihood of data 𝑡 = 𝑡𝑖 using this Gaussian

noise  model:

𝑝 𝒕|𝒘, 𝛽 =ෑ

𝑛=1

𝑁

𝒩 𝑡𝑛|𝒘
⊤𝝓 𝒙𝑛 , 𝛽−1

• The log-likelihood:

ln 𝑝 𝒕|𝒘, 𝛽 = lnෑ

𝑛=1

𝑁
𝛽

2𝜋
exp −

𝛽

2
𝑡𝑛 − 𝒘⊤𝝓 𝒙𝑛

2

=
𝑁

2
ln𝛽 −

𝑁

2
ln 2𝜋 − 𝛽

1

2


𝑛=1

𝑁

𝑡𝑛 −𝒘⊤𝝓 𝒙𝑛
2

• Sum of squared errors is maximum likelihood under a  

Gaussian noise model

constant w.r.t. 𝒘
squared error
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Announcements

Project examples

Project timeline
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Finding Optimal Weights

• How do we maximize likelihood wrt w (or minimize squared  

error)?

• Take gradient of log-likelihood wrt w:

𝜕

𝜕𝑤𝑖
ln 𝑝 𝒕|𝒘,𝛽 = 𝛽

𝑛=1

𝑁

𝑡𝑛 −𝒘⊤𝝓 𝒙𝑛 𝜙𝑖 𝒙𝑛

• In vector form:

∇ ln𝑝 𝒕|𝒘, 𝛽 = 𝛽

𝑛=1

𝑁

𝑡𝑛 −𝒘⊤𝝓 𝒙𝑛 𝝓 𝒙𝑛
⊤

ln 𝑝 𝒕|𝒘, 𝛽 =
𝑁

2
ln 𝛽 −

𝑁

2
ln 2𝜋 − 𝛽

1

2


𝑛=1

𝑁

𝑡𝑛 −𝒘⊤𝝓 𝒙𝑛
2
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Finding Optimal Weights

• Set gradient to 0:

𝟎⊤ = 

𝑛=1

𝑁

𝑡𝑛𝝓 𝒙𝑛
⊤ −𝒘⊤

𝑛=1

𝑁

𝝓 𝒙𝑛 𝝓 𝒙𝑛
⊤

• Maximum likelihood estimate for w:

𝒘𝑀𝐿 = 𝚽⊤𝚽 −1𝚽⊤𝒕

𝚽 =

𝜙0 𝒙1 𝜙1 𝒙1 ⋯ 𝜙𝑀−1 𝒙1
𝜙0 𝒙2 𝜙1 𝒙2 ⋯ 𝜙𝑀−1 𝒙2

⋮ ⋮ ⋱ ⋮
𝜙0 𝒙𝑁 𝜙1 𝒙𝑁 ⋯ 𝜙𝑀−1 𝒙𝑁

• 𝚽† = 𝚽⊤𝚽 −1𝚽⊤ is known as the pseudo-inverse
(numpy.linalg.pinv in python)



𝟎⊤ = 

𝑛=1

𝑁

𝑡𝑛𝝓 𝒙𝑛
⊤ −𝒘⊤

𝑛=1

𝑁

𝝓 𝒙𝑛 𝝓 𝒙𝑛
⊤

Math

𝚽 =

𝜙0 𝒙1 𝜙1 𝒙1 ⋯ 𝜙𝑀−1 𝒙1
𝜙0 𝒙2 𝜙1 𝒙2 ⋯ 𝜙𝑀−1 𝒙2

⋮ ⋮ ⋱ ⋮
𝜙0 𝒙𝑁 𝜙1 𝒙𝑁 ⋯ 𝜙𝑀−1 𝒙𝑁

𝟎⊤ = 𝒕⊤
𝝓 𝑥1

⊤

⋮
𝝓 𝑥𝑁

⊤

𝟎⊤ = 𝒕⊤𝚽

𝟎 = 𝚽⊤𝒕 −𝚽⊤𝚽𝒘

(Sum → dot product)

(Matrix form)

𝑦 𝒙, 𝒘 = 

𝑗=0

𝑀−1

𝑤𝑗𝜙𝑗 𝑥 = 𝑤⊤𝝓(𝒙)

−𝒘⊤ 𝝓 𝒙𝟏 ⋯ 𝝓 𝒙𝑵

𝝓 𝒙1
⊤

⋮
𝝓 𝒙𝑁

⊤

−𝒘⊤𝚽⊤𝚽

(Transpose, 𝐴𝐵 ⊤ = 𝐵⊤𝐴⊤)

𝚽⊤𝚽𝒘 = 𝚽⊤𝒕 ⇒ 𝒘 = 𝚽⊤𝚽 −𝟏𝚽⊤𝒕 (Rearrange and take inverse)
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Geometry of Least Squares

𝒮

𝒚

• 𝒕 = 𝒕𝟏,… , 𝒕𝑵 is the target value vector

• 𝒮 is space spanned by 𝝓𝑗 = 𝜙𝑗 𝒙1 , … , 𝜙𝑗 𝒙𝑁

• Solution 𝒚 lies in 𝒮

• Least squares solution is orthogonal projection of 𝒕 onto 𝑆

• Can verify this by looking at 𝒚 = 𝚽𝒘𝑀𝐿 = 𝚽𝚽†𝒕 = 𝑷𝒕

• 𝑷𝟐 = 𝑷,𝑷 = 𝑷⊤

𝜙1
𝜙2

𝒕



Math

𝒚 = 𝚽𝒘𝑀𝐿

𝒚 = 𝚽 𝚽⊤𝚽 −1𝚽⊤𝒕 = 𝑷𝒕

𝑷𝟐 = 𝚽 𝚽⊤𝚽 −1𝚽⊤

, where 𝑷 = 𝚽 𝚽⊤𝚽 −1𝚽⊤

= 𝚽 𝚽⊤𝚽 −1𝚽⊤

= 𝑷

𝚽 𝚽⊤𝚽 −1𝚽⊤

, where 𝒘𝑀𝐿 = 𝚽⊤𝚽 −𝟏𝚽⊤𝒕

verify 𝑷𝟐 = 𝑷



Math

𝒚 = 𝚽𝒘𝑀𝐿

𝒚 = 𝚽 𝚽⊤𝚽 −1𝚽⊤𝒕 = 𝑷𝒕 , where 𝑷 = 𝚽 𝚽⊤𝚽 −1𝚽⊤

𝑷⊤ = 𝚽 𝚽⊤𝚽 −1𝚽⊤ ⊤

, where 𝒘𝑀𝐿 = 𝚽⊤𝚽 −𝟏𝚽⊤𝒕

verify 𝑷 = 𝑷⊤

( 𝑨−𝟏
⊤
= 𝑨⊤ −𝟏

= 𝚽 𝚽⊤𝚽 −1 ⊤
𝚽⊤

= 𝚽 𝚽⊤𝚽 −1𝚽⊤

(Transpose, 𝐴𝐵 ⊤ = 𝐵⊤𝐴⊤)

, since 𝑨−𝟏
⊤
𝑨⊤ = 𝑨𝑨−𝟏

⊤
= 𝑰)
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Sequential Learning

• In practice N might be huge, or data might arriveonline

• Can use a gradient descent method:

• Start with initial guess for 𝒘
• Update by taking a step in gradient direction ∇𝐸 of error  

function

• Modify to use stochastic / sequential gradient descent:

• If error function 𝐸 = σ𝑛 𝐸𝑛(e.g. least squares)

• Update by taking a step in gradient direction ∇𝐸𝑛for one  

example

• Details about step size are important – decrease step size  

at the end
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Regularization

• Last week we discussed regularization as a technique to  

avoid over-fitting:

෨𝐸 𝒘 =
1

2


𝑛=1

𝑁

𝑦 𝑥𝑛,𝒘 − 𝑡𝑛
2 +

𝜆

2
𝒘 2

• Next on the menu:

• Other regularlizers

• Bayesian learning and quadratic regularizer

regularizer
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Other Regularizers

q  = 0.5 q = 1 q = 2 q = 4

• Can use different norms for regularizer:

෨𝐸 𝒘 =
1

2


𝑛=1

𝑁

𝑦 𝑥𝑛,𝒘 − 𝑡𝑛
2 +

𝜆

2


𝑗=1

𝑀

𝑤𝑗
𝑞

• e.g. 𝑞 = 2 – ridge regression

• e.g. 𝑞 = 1 – lasso

• math is easiest with ridge regression
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Optimization with a Quadratic Regularizer

• With 𝑞 = 2, total error still a nice quadratic:

෨𝐸 𝒘 =
1

2


𝑛=1

𝑁

𝑦 𝑥𝑛, 𝒘 − 𝑡𝑛
2 +

𝜆

2
𝒘⊤𝒘

• Calculus ...

𝒘 = 𝜆𝑰 +𝚽⊤𝚽 −1𝚽⊤𝒕

• Similar to unregularlized least squares

• Advantage: 𝜆𝑰 +𝚽⊤𝚽 is well conditioned so inversion

is stable

regularized



ln 𝑝 𝒕|𝒘, 𝛽 =
𝑁

2
ln 𝛽 −

𝑁

2
ln 2𝜋 − 𝛽

1

2


𝑛=1

𝑁

𝑡𝑛 −𝒘⊤𝝓 𝒙𝑛
2

Math

First, recall that without regularization,

⇒ 𝟎⊤ = 

𝑛=1

𝑁

𝑡𝑛𝝓 𝒙𝑛
⊤ −𝒘⊤

𝑛=1

𝑁

𝝓 𝒙𝑛 𝝓 𝒙𝑛
⊤

෨𝐸 𝒘 =
1

2


𝑛=1

𝑁

𝑦 𝑥𝑛, 𝒘 − 𝑡𝑛
2 +

𝜆

2
𝒘⊤𝒘

𝟎⊤ = −

𝑛=1

𝑁

𝑡𝑛𝝓 𝒙𝑛
⊤ +𝒘⊤

𝑛=1

𝑁

𝝓 𝒙𝑛 𝝓 𝒙𝑛
⊤

𝐸 𝒘

Now, with regularization,

+𝜆𝒘



Math

෨𝐸 𝒘 =
1

2


𝑛=1

𝑁

𝑦 𝑥𝑛, 𝒘 − 𝑡𝑛
2 +

𝜆

2
𝒘⊤𝒘

𝟎⊤ = −

𝑛=1

𝑁

𝑡𝑛𝝓 𝒙𝑛
⊤ +𝒘⊤

𝑛=1

𝑁

𝝓 𝒙𝑛 𝝓 𝒙𝑛
⊤ + 𝜆𝒘

Now, with regularization,

𝟎⊤ = −𝒕⊤
𝝓 𝑥1

⊤

⋮
𝝓 𝑥𝑁

⊤
+𝒘⊤ 𝝓 𝒙𝟏 ⋯ 𝝓 𝒙𝑵

𝝓 𝒙1
⊤

⋮
𝝓 𝒙𝑁

⊤
+ 𝜆𝑰𝒘

𝟎⊤ = −𝒕⊤𝚽+𝒘⊤𝚽⊤𝚽+ 𝜆𝑰𝒘

𝟎 = −𝚽⊤𝒕 + 𝚽⊤𝚽𝒘+ 𝜆𝑰𝒘

(Sum → dot product)

(Matrix form)

(Transpose, 𝐴𝐵 ⊤ = 𝐵⊤𝐴⊤)

(Rearrange)𝚽⊤𝚽+ 𝜆𝑰 𝒘 = 𝚽⊤𝒕

(Take inverse)𝒘 = 𝚽⊤𝚽+ 𝜆𝑰 −𝟏𝚽⊤𝒕

(because why not)
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Ridge Regression vs. Lasso

w1

w2

w

w1

w2

w

• Ridge regression aka parameter shrinkage

• Weights 𝒘 shrink back towards origin

• Lasso leads to sparse models

• Components of 𝒘 tend to 0 with large 𝜆 (strong  

regularization)

• Intuitively, once minimum achieved at large radius,  

minimum is on 𝑤1 = 0
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Outline

Regression

Linear Basis Function Models  

Loss Functions for Regression  

Finding Optimal Weights  

Regularization

Bayesian Linear Regression
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Bayesian Linear Regression

• Last week we saw an example of a Bayesian approach

• Coin tossing - prior on parameters

• We will now do the same for linear regression

• Prior on parameter 𝒘

• There will turn out to be a connection to regularlization
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Bayesian Linear Regression

• Start with a prior over parameters w

• Conjugate prior is a Gaussian:

𝑝 𝒘 = 𝒩 𝒘|𝟎, 𝛼−1𝑰

• This simple form will make math easier; can be done for  

arbitrary Gaussian too

• Data likelihood, Gaussian model as before:

𝑝 𝑡|𝒙,𝒘, 𝛽 = 𝒩 𝑡|𝑦 𝒙,𝒘 , 𝛽−1
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Bayesian Linear Regression

• Posterior distribution on𝒘:

𝑝 𝒘|𝒕 ∝ ෑ

𝑛=1

𝑁

𝑝 𝑡𝑛|𝒙𝑛, 𝒘, 𝛽 𝑝 𝒘

=ෑ

𝑛=1

𝑁
𝛽

2𝜋
exp −

𝛽

2
𝑡𝑛 −𝒘⊤𝜙 𝒙𝑛

2 𝛼

2𝜋

𝑀
2
exp −

𝛼

2
𝒘⊤𝒘

• Take the log:

− ln𝑝 𝒘|𝒕 =
𝛽

2


𝑛=1

𝑁

𝑡𝑛 −𝒘⊤𝜙 𝒙𝑛
2
+
𝛼

2
𝒘⊤𝒘+ const

• 𝐿2 regularization is maximum a posteriori (MAP) with a  
Gaussian prior.

• 𝜆 = 𝛼/𝛽
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Bayesian Linear Regression - Intuition

• Simple example 𝑥, 𝑡 ∈ ℝ,

𝑦 𝑥,𝒘 = 𝑤0 +𝑤1𝑥

• Start with Gaussian prior in  

parameter space

• Samples shown in dataspace

• Receive data points (blue  

circles in data space)

• Compute likelihood

• Posterior is prior (or  

prev. posterior) times  

likelihood
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Predictive Distribution

• Single estimate of 𝒘 (ML or MAP) doesn’t tell whole story

• We have a distribution over w, and can use it to make  

predictions

• Given a new value for x, we can compute a distribution 

over 𝑡:

𝑝 𝑡|𝒕, 𝛼, 𝛽 = න𝑝 𝑡,𝒘|𝒕, 𝛼, 𝛽 𝑑𝒘

𝑝 𝑡|𝒕, 𝛼, 𝛽 = න𝑝 𝑡|𝒘, 𝛽 𝑝 𝒘|𝒕, 𝛼, 𝛽 𝑑𝒘

• i.e. For each value of 𝒘, let it make a prediction, multiply by  

its probability, sum over all 𝒘
• For arbitrary models as the distributions, this integral may  

not be computationally tractable

predict probability sum
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Predictive Distribution

0 1

−1

0

1

0 1

−1

0

1

0 1

−1

0

1

• With the Gaussians we’ve used for these distributions, the  
predicitve distribution will also be Gaussian

• (math on convolutions of Gaussians spared)

• Green line is true (unobserved) curve, blue data points, red  
line is mean, pink one standard deviation

• Uncertainty small around data points

• Pink region shrinks with more data
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Bayesian Model Selection

• So what do the Bayesians say about model selection?

• Model selection is choosing model ℳ𝑖 e.g. degree of
polynomial, type of basis function 𝝓

• Don’t select, just integrate

𝑝 𝑡|𝒙, 𝒟 =

𝑖=1

𝐿

𝑝 𝑡|𝒙,ℳ𝑖 , 𝒟 𝑝 ℳ𝑖|𝒟

• Average together the results of all models

• Could choose most likely model a posteriori 𝑝 ℳ𝑖|𝒟

• More efficient, approximation
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Bayesian Model Selection

• How do we compute the posterior over models?

𝑝 ℳ𝑖|𝒟 ∝ 𝑝 𝒟|ℳ𝑖 𝑝 ℳ𝑖

• Another likelihood + prior combination

• Likelihood:

𝑝 𝒟|ℳ𝑖 = න𝑝 𝒟|𝒘,ℳ𝑖 𝑝 𝒘|ℳ𝑖 𝑑𝒘
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Conclusion

• Least squares

• Regularization

• Readings: Ch. 3.1, 3.1.1-3.1.4, 3.3.1-3.3.2, 3.4

• Linear Models for Regression

• Linear combination of (non-linear) basis functions

• Fitting parameters of regression model

• Maximum likelihood (can be = least squares)

• Controlling over-fitting

• Bayesian, use prior (can be = regularization)

• Model selection
• Cross-validation (use held-out data)

• Bayesian (use model evidence, likelihood)


