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Markov Decision Process

* Probabilistic model of robots and other systems
e State: s € §, discrete or continuous

* Action (control): a € A, discrete or continuous
* Transition operator (dynamics): T

* Tijk = p(Ser1 = i|s¢ = j,a; = k) € atensor (multidimensional array)
At At+1

p(S¢r1lse ag) p(S¢t1lse, ap)
St " St+1 " St+2




State in MDPs and Reinforcement Learning

e State includes the internal states of an agent, but often also include
» State of other agents
* State of the environment
* Sensor measurements

e Distinction between state and observation can be blurred

* In general, the state contains all variables other than actions that
determine the next state through the transition probability

D(S¢t1]Se ag)



Policy and Reward

* Control policy (feedback control): m(als)
e Parametrized by 6

0:mq(als) = p(als)

e Can be stochastic: probability of applying action a at
state s




Policy and Reward

* Control policy (feedback control): m(als)
e Parametrized by 6

0:mq(als) = p(als)

e Can be stochastic: probability of applying action a at
state s

 Reward function: r(s;, a;)

* Reward received for being at state s; and applying
action a;




Extensions of Problem Setup

 Partially observability
 Partially Observable Markov Decision Process (POMDP)
» State not fully known; instead, act based on observations

O¢ "o At Ot+1 " At41
p(5t+1®‘ p(S¢+1lse, a)
St " St+1 " St+2

* Policy: mg(alo)
* In this class, state s will be synonymous with observation o.



Reinforcement Learning Objective

* Given: an MDP with state space S, action space A, transition
probabilities T, and reward function (s, a)

* Objective: Maximize discounted sum of rewards (“return”)

maximize E ) y*r(s,, a;)
Tt
t
* y € (0,1]: discount factor — larger roughly means “far-sighted”

* Prioritizes immediate rewards
* ¥ < 1 avoids infinite rewards; y = 1 is possible if all sequences are finite

* Constraints: often implicit, and part of the objective
e Subject to transition matrix I (system dynamics)
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Imitation Learning

 Collect data through expert demonstration — sequence of states and
actions, {sy, ag, S1, a1, .., SN—1, AN—1, SN }
* Note: Expert may not be solving maximize E[Y.:2, ytr (s, a;)]
T

e

* Learn g (a;|s;) from data via regression
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Imitation Learning

 Collect data through expert demonstration — sequence of states and
actions, {sy, ag, S1, a1, .., SN—1, AN—1, SN }
* Note: Expert may not be solving maximize E[Y.:2, ytr (s, a;)]
T

* Learn g (a;|s;) from data via regression

e Usually doesn’t work due to “drift”: small mistakes add up, and takes
the system far from trained states

* Sometimes, there can be “tricks” to make imitation learning work!



Autonomous Driving Through Imitation




Recorded

Training: steefing
wheel angle : : Desired steering command
g Adjust for shift g
and rotation
( ) Network
Left camera computed
: ’ steering ¥
( ) » i command / ’
Center camera | et Ol > CNN > =
L | and rotation
Right camera f
ks Iy
Back propagation Error
: : -
weight adjustment
Network
H . computed
Testing: ctooring

( | command : :
Center camera CNN Drive by wire
~ interface

Bojarski et al. 2016. “End to End Learning for Self-Driving Cars,” CVPR 2016




Dataset Aggregation

* Imitation learning drawback:

* Distribution of observations in training is different from distribution of
observations during test

* Some states have never been seen during demonstration

P

* How to make the distributions equal?
* Train perfect policy
* Change data set > DAgger (Dataset Aggregation)




Dataset Aggregation (DAgger) Algorithm

1. Train policy from some initial data, D; =
{50, a0,51,a4, o, SN—1, AN -1, SN}

2. Run policy to obtain new observations {Sy+1, SN+2, «+» SN+M}
* Note: time indices and states here may not continue from initial data

3. Use humans to label data by providing actions for new
observations, {ayi1, ..., An+p—1)
e This creates another data set, D; =
{SN+1) AN 41, SN+2) AN 42 o) AN+ M—1, SN+M}
4. Combine two datasets, D; « D; U D;
* Go back to first step



Challenges

* Non-Markovian behaviour
* Perhaps augment state/observation space to include some history
* Use neural networks that implicitly capture time series data: RNNs/LSTMs

 Unnatural data collection

 Humans are probably not very good at collecting correction data in this
manner

* |nconsistencies in human action



Addressing Drift

* Main goal: Teach system to correct errors

* Explicitly demonstrate corrections (DAgger)

* During demonstration, add noise to “force” mistakes, and see how humans
correct them

* Ask humans to intentionally make mistakes

* Prior knowledge and heuristics
* Example: Learn from stabilizing controller



Imitation Learning Tricks

e Common neural network architectures
e LSTM — since we have time-series data
* CNN — usually in combination with LSTM, if the observations are images

e Simplify action space:
* Driving example: action space simplified to {left, centre, right}

Recorded

* Clever data collection @ o[ endrtten
* Driving example: side cameras Tﬁ» Ntn‘l’égd [
Conercamers| 3 Tdma o ow T
* Inverse reinforcement learning == - !
* Learn goal, instead of policy, from data i

* Use reinforcement learning to learn to achieve the same goal



Imitation Learning Drawbacks

* Very small amount of data — challenging for training deep neural
networks

* Humans are not very good at providing some kinds of actions
* Quadrotor motor speed
* Non-humanoid machines

* Hard to perform better at tasks humans are not very good at
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Reinforcement Learning

* Humans can learn without imitation
* Given goal/task
* Try an initial strategy
* See how well the task is performed
* Adjust strategy next time

* Reinforcement learning agent
* Given goal/task in the form of reward function r(s, a)
* Start with initial policy my(a|s); execute policy
* Obtain sum of rewards, ., r(s;, a;)
* Improve policy by updating 8, based on rewards



Reinforcement Learning Objective

* Given: an MDP with state space &, action space A, transition probabilities
T, and reward function r(s, a)

* Objective: Maximize expected discounted sum of rewards (“return”)

maximize E ) y'r(s, a;)
g
t=0
* v € (0,1]: discount factor — larger roughly means “far-sighted”
* Prioritizes immediate rewards

* ¥ < 1 avoids infinite rewards; y = 1 is possible if all sequences are finite

* Constraints: now incorporated into the reward function
* Only constraint (usually implicit): subject to transition matrix J° (system dynamics)



RL vs. Other ML Paradigms

* No supervisor
* But we will often draw inspiration from supervised learning

e Sequential data in time

* Reward feedback is obtained after a long time
* Many actions combined together will receive reward
e Actions are dependent on each other

* In robotics: lack of data



Reinforcement Learning Categories

* Model-based

* Explicitly involves an MDP model

* Model-free
* Does not explicitly involve an MDP model

* Value based
* Learns value function, and derives policy from value function

* Policy based

* Learns policy without value function

* Actor critic
* Incorporates both value function and policy



Value Functions

* “State-value function”: V_(s) -- expected return starting from state s
and following policy

* V(s) = Eat~n[2§o=0 ]/t’l"(St, at) |so = s]
* Expectation is on the random sequence {sq, ao, S1, a1, ... }

* “Action-value function”, or “Q function”: Q. (s, a) -- expected return
starting from state s, taking action a, and then following policy

* Qr(s,a) = Eat~n[21?0=0 )/tT(St, at) |so = s,a9 = al



Principal of Optimality

St+1
's,,
* Optimal discounted sum of rewards: @t,,: .
* Vpr(s) = m;lx E[X¢20 yir(se ae) |so = s] '/ﬂ “ $5041
* Dynamic programming: s, o a?t ’

* Vie(s) = n}latX Elr(se ar) + vV (Se+1)|Se = 5]



Principal of Optimality

e Optimal discounted sum of rewards:

* Vpe(s) = m;lx E[XZov T (st ae) |so = s]

* Dynamic programming:
* Vpe(s) = n}latX E[r(se, ap) + ¥V (See1)|Se = S]

* Qp(s,a) = E[r(ss, ar) + ¥V (S¢41) ISt = s,a¢ = al

e Actually, recurrence is true even without maximization
* Vz(s) = E[r(se, ar) + vV (ser1)|se = S|
* Qr(s,a) = E[r(sg, ar) + yVe(ses1)|se = s, ar = al



Basic Properties of Value Functions
* Vi (s) = max V(s)

* Qe (5,@) = max Qn (s, @)

* Vi (s) = max Q- (s, )

* For now, value functions are stored in multi-dimensional arrays

* DP leads to deterministic policies — we will come back to stochastic policies



Optimizing the RL Objective via DP ,

. ~ 1
e State-value function r(se, at)‘ )
* Ve (s) = H}ftlx E[r(ss ar) + vV (ser1)lse = s] ' -

/

¢ Vo+(s) = maax{’r(S, a) + YE[V(s¢r1)lse = s} V(St).’{, ? ,_ )
Ve (s) = max{r(s, @) + v Solp(s'ls, Ve (D))
« “Bellman backup”: V(s) « m;lX{T(S, a) + str[P(S'|S; a)V(S’)]}

* This is done for all s
* |terate until convergence

 Optimal policy: a = arg me}x{r(s, a') +ylp(s’]s, a’)V(S’)]}
a

e Deterministic



Optimizing the RL Objective via DP

e Action-value function

At+1

* Qp+(s,a) =7(s,a) +YE [rriaf Qn(St+1, A1) |Se = s,ar = a]
+

* Qp(s,a) =71(s,a) + VZS [p(S s, a)Vn*(S,)]
e “Bellman backup”:
e V(s) « max Q(s,a)

* Q(s,@) < 1(5,0) +y Zylp(s'ls, )V (s)] VSer)
e Thisis done forall s and all a
* Iterate until convergence r(s,, at)
. . / %St at)
* Optimal policy: a = arg max Q(s,a’) ‘ K V(5i41)
a
* Deterministic V(st)oi, ?S i)
t» "t



Approximate Dynamic Programming

e Use a function approximator (eg. neural network) V(s; w), where w
are weights, to approximate I/

* V(s) is no longer stored at every state
* Weights w are updated using Bellman backups

 Basic algorithm: (We will learn about other variants too)
* Sample some states, {s;}
* For each s;, generate V(s;) = max{r(s, a) + )/Zsr[p(S'ISt, a)V (s'; W)]}
a

* Using {s;, V(s;)}, update weights w via regression (supervised learning)



Generalized Policy Evaluation and Policy Improvement

e Start with initial policy T and value function V or Q

* Use policy ™ to update V or Q: a = m(s)
. { + V(s) «1(s,a) + v Ze[p(s's, )V (s)]

* Q(s,a) «r(s,a) +y Xylp(s'|s,a)V(s')]
* In general, any T Q

e Use V or Q to update policy m:
op { * Given V(s), m(s) = arg m;lx{r(s, a) +y Yo lp(s'|s, )V (s)H]}
* Given Q(s,a),m(s) = arg max Q(s,a)

* In general, any



Convergence

* At convergence, the following are simultaneously satisfied:
* V(s) =r(s,a) +y 2 lp('ls,a)V(s")]
e 7(s) = arg rr}lalx{’r(s, a') +yx lp(s’ls, a’)V(S’)]}

* This is the principle of optimality T

* Therefore, the value function and policy are optimal



Terminology

* “Value iteration”: The process of iteratively updating value function

* With DP, we only need to keep track of value function IV or Q, and the policy @
is implicit — determined from value function

* “Policy iteration”: The process of iteratively updating policy
* This is done implicitly with Bellman backups

» “Greedy policy”: the policy obtained from choosing the best action
based on the current value function

* |f the value function is optimal, the greedy policy is optimal



Towards Model-Free Learning

* Policy evaluation
* Monte-Carlo (MC) Sampling
e Temporal-difference (TD)

* Policy improvement
* e-greedy policies



Monte-Carlo Policy Evaluation

e Start with initial policy T and value function V or Q

* Use policy ™ to update V: a = w(s)
 Apply 1 to obtain trajectory {s,, ag, S1, a1, ... }
« Compute return: R :== Yytr(s,, a;)
* Repeat for many episodes to obtain empirical mean
* “Episode”: a single “try” that produces a single trajectory

* Use V or Q to update policy



Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N(s), # of times s is visited for
every state

e Startat N(s) = O forall s
* Note that this means storing N (and S below) at every state

* First-visit MC Policy Evaluation:

» At the first time t that s is visited in an episode,
* Increment N(s) « N(s) + 1
 Record return R(s) « R(s) + Yyir(ss a;)
* Repeat for many episodes

R(s)

N(s)

* Estimate value: V(s) =



Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N(s), # of times s is visited for
every state

e Startat N(s) = O forall s
* Note that this means storing N (and S below) at every state

 Every-visit MC Policy Evaluation:

* Every time t that s is visited in an episode,
* Increment N(s) « N(s) + 1
 Record return R(s) « R(s) + Yyir(ss a;)
* Repeat for many episodes

R(s)

N(s)

e Estimate value: V(s) =



Incremental Updates

* Instead of estimating V. (s) after many episodes, we can update it
incrementally after every episode after receiving return R

* N(s) « N(s)+1
$ V() < V() + 5 (R = V()

* More generally, we can weight the second term differently
e V(s) «V(s) + a(R — V(S))



Monte-Carlo Policy Evaluation

e Start with initial policy T and value function V or Q

* Use policy ™ to update V: a = w(s)
* MC policy evaluation provides estimate of 1/,

* Many episodes are needed to obtain accurate estimate
* Model-free with MCl

* Use V or Q to update policy
* Greedy policy?



Monte-Carlo Policy Evaluation

e Start with initial policy T and value function V or Q

* Use policy ™ to update V: a = w(s)
* MC policy evaluation provides estimate of 1/,

* Many episodes are needed to obtain accurate estimate
* Model-free with MCl T

* Use V or Q to update policy
+—Greedy-potiey?

* Greedy policy lacks exploration, so V; is not estimated at many states

* e-greedy policy



e-Greedy Policy
* Also known as e-greedy exploration

* Choose random action with probability €
e Typically uniformly random
* |f a takes on discrete values, then all actions will be chosen eventually

* Choose action from greedy policy with probability 1 — €
+ @ = argmax{r(s,a’) +v [p(slse, )V (5)]1}

* Still requires model, p(s|s;, a)...
* Solution: Q function



Monte-Carlo Policy Evaluation

* To obtain empirical mean, we record N (s, a), # of times s is visited for
every state

e Startat N(s,a) = O forall sand a
* Note that this means N (and S below) must be stored for every s and a

* First-visit MC Policy Evaluation:

* At the first time t that s is visited in an episode,
* Increment N(s,a) « N(s,a) + 1
 Record return R(s,a) « R(s,a) + Yytr(ss, a;)

* Repeat for many episodes
R(s,a)

N(s,a)

 Estimate action-value function: Q(s,a) =



Incremental Updates

* Instead of estimating Q(s, a) after many episodes, we can update it
incrementally after every episode after receiving return R

* N(s,a) « N(s,a) +1
* Q(s,a) « Q(s,a) +

1
N(s,a)

(R — Q(s, a))

* More generally, we can weight the second term differently
* O(s,a) « Q(s,a) + a(R — Q(s, a))



Monte-Carlo Value Function Estimate

e Start with initial policy T and value function V or Q

 Use policy  to update Q: a = n(s)
* Repeat for many episodes:
* N(s,a) « N(s,a) +1

* Q(s,a) <« Q(s,a) +

e Use () to update policy
* e-greedy policy
* With probability €, choose random control
* With probability 1 — €, choose a = argmax{Q(s,a’)}
a

1
N(s,a)

(R (s,a) — Q(s, a))

* Pick e = %, where k is the # of algorithm iterations

* Explore less as value function becomes more accurate
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DP vs. MC Policy Evaluation

* Suppose the policy T is given
* Dynamic Programming
V(s) « max Q(s,a)

0(s,0) = r(5,@) +7 ) [p(s'ls, )V ("]

S1 S2 S3



DP vs. MC Policy Evaluation

* Suppose the policy T is given

* Dynamic Programming * Monte-Carlo
V(s) «maxQ(s,a) * Repeat for many episodes:
a N(s,a) « N(s,a) +1
Q(s,a) «7r(s,a) + yE[p(s’ls, )V (s")] Q(s,a) < Q(s,a) + a(R — Q(s, a))
S s’ S

Sl Sz S3 Sl Sz 53



Temporal-Difference (TD) Policy Evaluation

* Temporal-difference: a class of policy evaluation techniques TD(A)

* Most basic version: TD(0)

* From any state s, apply policy a = m(s) for one time step, obtain reward
r(s,a)
* Get to next state s’, and estimate return from then on using Q function
* Note: next action is also from the same policy, a’ = w(s')
+ Q(s,0) < Q(s,@) + a(r(s, @) +vQ(s',a") — Q(s, @)
* Repeat for many episodes to obtain Q (s, a) estimates at many states s and
actions a



Temporal-Difference (TD) Policy Evaluation

* Most basic version: TD(0)
Q(S, a) < Q(S, Cl) + C((T'(S, Cl) + ]/Q(S,, a,) _ Q(S, Cl))
* Advantages:

* Online algorithm: Q can be updated during an
episode

* Does not require complete episodes

* Disadvantages:
e System may not be Markov g
* |nitial Q can be very bad and Q may never improveﬁ\

enough l
000 000 000



n-step 1D , ,

 TD: Look ahead one step
° Q(S, a) < Q(S, Cl) + C((T'(S, Cl) + )/Q(S,, a,) _ Q(S, Cl))

* n-step TD: look ahead n steps
Q(S, Cl) < Q(S, Cl) +a (T(Sr Cl) + '}/T'(S.|_1, a+1) + - yn_lr(s+(n—1)' a+(n—1)) + ynQ(S+n' a+n) T Q(S, a))

\ J

= Rn S

* MC: Look ahead until the end of the episode



TD(A)

* n-step return estimate:
* Ry =r1(s,a) +yr(s41,a41) + - Vn_lr(5+(n—1): a+(n—1)) + " Q(S4n Ayn)

* A-return: weighted average of different n-step returns
* Weights: (1 — )A™ 1
* Estimated return: (1 — 2A) Yoo A" 1R,
e Small A 2 near-future rewards are more important
* Large A - far-future rewards are more important

* TD(A) policy evaluation:
* Q(s,0) < Q(s, ) +a((1-D X A" R, — Q(s,0))



SARSA Algorithm

e Start with initial policy T and value function V or Q

* Use e-greedy policy to update Q: a,a’~m(s), m is e-greedy
* Repeat for many episodes:
* Q(s,a) « Q(s,a) + a(r(s,a) +yQ(s',a") — Q(s,a))
* New policy T is derived from new T
* e-greedy policy
* With probability €, choose random control
* With probability 1 — €, choose a = arg rrzle,lx{Q(S, a')}

e If e, X %, then Q(s,a) = Q,+(s,a)



On-Policy and Off-Policy Learning

From SARSA:
* Use e-greedy policy to update Q: a,a’~m(s), w is e-greedy
* Repeat for many episodes: Q(s,a) < Q(s,a) + a(r(s, a) +yQ(s’,a") — Q(s, a))

* “Behaviour policy”: policy used to collect rewards -- a~mz(s)
* “Target policy”: policy used to estimate future rewards -- a’~m(s)

* “On-policy learning”: mg = 1y
* SARSA is an on-policy learning algorithm

» “Off-policy learning”: mg # mr
Q(s,a) « Q(s,a) + a(r(s, a) +yQ(s',a') — Q(s, a)), where a~mg(s),a’ ~m(s)



Off-Policy Learning

* Off-policy learning: Behaviour and target policies are different
Q(s,a) < Q(s,a) + a(r(s, a) +y0Q(s’,a’) — Q(s, a)), where a~mg(s), a’ ~mr(s)

* Advantages:
* Learn from observing another agent (eg. human) execute a different policy
* Learn from experience generated from old policies
* Improve two policies at once, while following one policy

* Example: Q-Learning algorithm
* g is e-greedy with respect to ¢
* 7 is greedy with respect to



Q-Learning Algorithm

e Start with initial policy T and value function V or Q
* Update Q:

* Repeat for many episodes with e-greedy policy a~mgz(s):
* Q(s,a) « Q(s,a) + « (r(s, a) +ymaxQ(s',a") — Q(s, a))

* Both the e-greedy myz and the greedy m+ are derived from

e Ife,a = %, then Q(s,a) - Q+(s,a)



Function Approximation

* So far, Q(s, a) is stored in a multi-dimensional array
* Model-free, but cannot solve large problems

* Parametrize value functions with parameters (or weights) w

* (s, w) = Q(s,a)
* Update parameters w using MC- or TD-based learning
* Hopefully, Q is generalizable to different states s and actions a



Fitting to a Known Q.

* Fit Q(S, a, W) to Qn'(SJ (l)
minimize||Q, (S, A) — Q(S, 4; W)Hz
w
* Training data: {(s;, a;), Q.(s;, a;)}

* The collection of states and actions in training data is denoted S and A

e Gradient with respect to w:

2
(S, A, =2 (xS, 4) = A, 4;w)) 7%

aQ(SA w)

e Gradient descent:

s w e w—a(Qa(S,4) - (S, 4w)) 5
* In practice, use stochastic gradient descent

90 (S,A;w)




Monte-Carlo Incremental Weight Updates

* First-visit MC policy evaluation
* At the first time t that s is visited in an episode,
* Increment N(s,a) « N(s,a) + 1
 Record return R(s,a) « R(s,a) + Yytr(s,, a;)

* Repeat for many episodes
R(s,a)

N(s,a)
* Above procedure produces “training data” {S, 4, R}

e Storing a set of S, A4, R, etc. is called “experience replay”
* This is as opposed to updating w as data is being collected

* Update weights:
° W « W—a(R — Q(S,A;W))

 Estimate action-value function: Q(s,a) =

2Q(S,4;w)
ow

* Guaranteed to converge to local optimum



Temporal-Difference Incremental Weight Updates

* Most basic version: TD(0)

* From any state s, apply policy a = m(s) for one time step, obtain reward r(s, a)
* Get to next state s’, and estimate return from then on using Q function

* Q(s,a) « Q(s,a) + a(r(s,a) +yQ(s',a") — Q(s,a))
* Repeat for many episodes to obtain Q (s, a) estimates at many states s and actions a

* Above procedure produces a collection of current and next states and
actions, S,A,R,S’ A’

e Update weights using TD target:
cw e w—a(R+yQ(S, A w) = QS 4 w))

* Not always guaranteed to converge to local minimum

2Q(S5,4;,w)
ow




Q-Learning With Function Approximation

Goal: Given a set of weights w™, find the next set of weights w in
Q(s,a;w)

1. From any state s, apply e-greedy policy with respect to Q (s, a; w™)
* This produces a collection S, 4, R, S’

2. Sample from the above collection to obtain a smaller data set
S,AR,S’

3. Update weights using stochastic gradient descent ,
minimize Hﬁ + ¥ max Q(S’,a’;w™) —Q(S,4; w) ”
w a 2

» Use deep Q-network (DQN) for Q(S, 4; w) > deep Q-learning



Deep Q-Learning Example: Atari Games
* Minh et al. “Playing Atari with Deep Reinforcement Learning,” 2013

e States: pixels from last few frames

e Actions: controls in the game

* Reward: game score

* Deep Q network: convolutional and fully connected layers



Starting out - 10 minutes of training

The algorithm tries to hit the hall back, but
itis yet too clumsy to manage.




Deep Q-Learning: Robotic Arms

* Gu et al. “Deep Reinforcement Learning for
Robotic Manipulation with Asynchronous Off-
Policy Updates,” 2017.

 States: joint angles, end-effector positions, and
their time derivatives, target position

* Actions: joint velocities of arm, torque of fingers

* Task: open door, pick up object and place it
elsewhere

* Deep Q network: two fully connected hidden
layers, 100 units each

* Main challenge: use multiple robots to learn at the
same time and share knowledge

0.3 w1 worker
- ) workers

test reward

100 200 300 400 500 600 700 800
updates (1000s)
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Categories of RL

* Model-based

* Explicitly involves an MDP model

e Model-free
e Does not involve an MDP model

* Value based
* Learns value function, and derives policy from value function

* Policy based

* Learns policy without value function

* Actor critic
* Incorporates both value function and policy



Policy Gradients

* If we executed a policy mg from state sy, we obtain a trajectory

o T:=(Sg,ap,51,a1,-..)
* Note: this is a random variable

* The return is given by R(7) = Y50 ¥ 7 (se, ap)
* Also a random variable

* Expected return given parameters 8: J(8) := E;_.0)[R(7)]

e Parameters for the optimal policy:
+ 0" = argmax By _p(r;0)[R(D)]



Policy Gradients

* Strategy: differentiate /(8) w.r.t. 8 and perform stochastic gradient
ascent

e Do this in a way that is model-free and computationally tractable

A
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Policy Gradients

* Strategy: differentiate /(8) w.r.t. 8 and perform stochastic gradient

ascent
e Do this in a way that is model-free and computationally tractable

* To achieve this
* Write out J(60)
* Take gradient
* Do a math trick
* Obtain gradient expression that can be estimated easily

A

74




Write Out J(8) and Take Gradient
* J(0) = Eiepz;0)[R(T)]
+J(©) = [.R()p(z; O)dx

+Vo](0) = [ R(D)Vep(z; 0)dt
* Hard...



Log Gradient Trick
+Vo](0) = [.R(D)Vep(z; 0)dt

* Trick:

\Y 0
 Vop(1; 0) = p(r; 6) "7 = p(; 6)V, log p(x; 6)
Vo) (0) = [, R(D)p(z; 6)V, log p(; 0) de

* VoJ(0) = Erpr.0)|[R(T)Vg logp(7; 6)]

* Gradient is an expectation — can estimate this using techniques we learned
before!




Model-Free Estimate of Gradient
* Vo] (0) = Erep(r:9)|[R(T)Vg log p(7; 0)]

* p(7;0) = |l120P(Se+1lSe, ar)mg(ag|se)
* logp(t;0) = Yisollogp(Ses1lSe ar) +logmg(aese)]
* Vo logp(7;0) = Xts0 Vo logmg (ag|se)

* Amazingly, model-free
* Markov property is not used

* Vg logmg(a;|s;) is known: since the form of my is known
* Eg. Backprop if Ty is a neural network



Monte-Carlo Gradient Estimate

e Results so far:

* VoJ(0) = Erpz.)|[R(T)Vg logp(7; 6)]
* Vglogp(7;0) = X450 Vg logmg(as|s,)

* Some more algebra to write out gradient of V,/(6)

* VH](H) = IET~p(T;9)
* VH](H) = IET~p(T;9)

R(7) X¢»0 Vo logmg (at|se)]

Dt20R(T)Vg logmg(as|se)]

* Vo) (0) ~ 5 Zia[Teno R(T)V logmg (arlse,i)]



REINFORCE Algorithm

* (Monte-Carlo Policy Gradient)
» Use policy 4 (als) to obtain trajectories 7; = {sq;, ag;, -}

* Estimate the gradient of the reward
« VgJ(0) = ?’:1[21520 R(7;)Vg logmg (at,i|5t,i)]

e Update policy parameters via (stochastic) gradient ascent
c 90— 0+avVyjo)



Observation 1

 Gradient estimate:
* VoJ(0) = Erp(r0)[Xe20 R(T)Vg log g (at|se)]
* VgJ(0) = Iiv=1[2tzo R(7;)Vy 108”0(“t,i|5t,i)]

e Gradient estimate also works for POMDPs without modification
R(74) 2 Vg logmg (at,l |St,1)
/‘Z Vg logmg (at,l |St,1) =0

t=>0
| 4

Suppose

* R(1q) =2

* R(1,)=-1
* R(r3) =1




Observation 1

 Gradient estimate:
* VoJ(0) = E; pcr;0)[ 220 R(T)Vg log gy (ar|se)]
* VgJ(0) = Iiv=1[2tzo R(7;)Vy logﬂe(at,i|5t,i)]

e Gradient estimate also works for POMDPs without modification

* Parameter updates: 8 <« 6 + a V4] (6)
* Trajectories have high reward will be made more likely
* Trajectories with low reward will be made less likely
* A high-reward trajectory has good actions... on average



Observation 2

e Gradient estimate:
* Vo] (0) = Eropr:0) | Xe20 R(T)Vg log g (a¢|s,)]

e Causality?
* R(7) is the reward of the entire trajectory
* R(7) is multiplied in every term of the sum
* T includes times before t

* So, according to the above, the weight of Vg logmg(a;|s;) depends on times
priorto t?

e Simple fix:
* VgJ(0) = Ezep(z:0) [tho[(ztfzt Vt,_tr(st» at))ve log g (atlst)]]



Observation 3

e Gradient estimate:
* VpJ(0) = Ezp(r;0) [Xt20R(T)Vg logmg(as|s,)]

R(tq) Z Vg logmg(as1]stq
Z Vg logmg (at,2|5t,2) =0 ( )
t=0 Z Vg logmg (at,l |St,1)
£>0
e —
Suppose R(z;) z Vg logmg(arzlstz)
i R(Tl) =2 t=0
Vologmo(a; -|s * R(1;) =-1
; o logmg(asslsts) . R(Ti) —q R(T3)2V@ logmg(ass|ses)

t=0



Observation 3

e Gradient estimate:
* VpJ(0) = Ezp(r;0) [Xt20R(T)Vg logmg(as|s,)]

R(ty) Z Vg logmg(ag,1lse1
Z Vg logmg (at,2|5t,2) =0 ( )
t>0 Z Vg logmg (at,l |St,1)
t=0
I ——
Suppose R(z;) z Vg logmg(arzlstz)
* R(14) =10 t=0
Vg logmg(ass|s * R(t,)=7
; o logmg(asslsts) . R(Ti) _ 9 R(T3)2V@ logmg(ass|ses)

t=0



Observation 3

e Gradient estimate:
* VoJ(0) = Erp(r;0)[X20 R(T)Vg logmg (ar|se)]

R(r1) ) Vg logmg(ac, lse)

t>0
Z Vg logmg (at,l |St,1)
/ t=0
| 2

Suppose

* R(14) =10
* R(t,)=7
* R(13) =9

* Performance is measured by reward R(7)
e But what is considered “good”?
* Need a baseline of comparison!

* VyJ(0) = Ezp(r;0) [Yts0(R(T) — b)Vg logmg(as|s,)]
* Fact: expectation is unchanged as long as b does not depend on 6



Revised REINFORCE

* (Monte-Carlo Policy Gradient)
* Use policy my(a|s) to obtain a trajectory T = {sy, ay, ... }

* Estimate the gradient of the reward
* VoJ(0) = Erp(z;0) [tho[(ztfzt Vt,_tT(St; ag) — b)Vg log g (at|5t)]]

e Update policy parameters via (stochastic) gradient ascent
c 0 —0+aVyH)



Picking a Baseline

* Many choices

* One intuitive choice

*b=V.(s)

* Define A (s,a) = —V_(s)
* Good action: one that gives a that is large relative to I/
* Bad action: one that gives a that is small relative to V

* A_(s,a) -- “advantage function”

e But we don’t know V...
e Learn it!



Actor-Critic Methods

* Actor (policy ) decides which actions to take

* Critic (value function V') decides how good the action is




Actor-Critic Methods

* Basic algorithm, combining everything we’ve learned:

1. Start with some initial policy 7y and value function V (s; w)
* 0 and w are parameters

2. Collectdata S, R, S’ by executing policy
3. Update Vy: miniugnize”i? +yV (S w™) =V (S; W)”z
 Many methods (eg. stochastic gradient descent)
Estimate policy gradient: VgJ(0) = E;opr.0) [tho (R' +yV(S') - Vn(S)) Vg log g (at|St)]
5. Improve policy via gradient ascent: 8 « 6 + aVyJ(6)
6. Repeat 2-5 many times



State-of-the-Art Policy Gradient Methods

* Trust region policy optimization (TRPO)
* https://arxiv.org/abs/1502.05477

* Proximal policy optimization (PPO)
e https://arxiv.org/abs/1707.06347



https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347

