
Reinforcement Learning
CMPT 419/726

Mo Chen

SFU Computing Science

18/3/2020

Outline

• Reinforcement learning problem setup

• Imitation learning

• Basic ideas in RL

• Model-free value-based RL

• Policy-based and actor-critic RL

Outline

• Reinforcement learning problem setup

• Imitation learning

• Basic ideas in RL

• Model-free value-based RL

• Policy-based and actor-critic RL

Markov Decision Process

• Probabilistic model of robots and other systems

• State: 𝑠 ∈ 𝒮, discrete or continuous

• Action (control): 𝑎 ∈ 𝒜, discrete or continuous

• Transition operator (dynamics): 𝒯
• 𝒯𝑖𝑗𝑘 = 𝑝 𝑠𝑡+1 = 𝑖|𝑠𝑡 = 𝑗, 𝑎𝑡 = 𝑘 a tensor (multidimensional array)

𝑎𝑡

𝑠𝑡 𝑠𝑡+1
𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑠𝑡+2

𝑎𝑡+1

𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

State in MDPs and Reinforcement Learning

• State includes the internal states of an agent, but often also include
• State of other agents

• State of the environment

• Sensor measurements

• Distinction between state and observation can be blurred

• In general, the state contains all variables other than actions that
determine the next state through the transition probability
𝑝 𝑠𝑡+1|𝑠𝑡, 𝑎𝑡

Policy and Reward

• Control policy (feedback control): 𝜋 𝑎 𝑠
• Parametrized by 𝜃

𝜃: 𝜋𝜃 𝑎 𝑠 ≔ 𝑝 𝑎 𝑠

• Can be stochastic: probability of applying action 𝑎 at
state 𝑠

• Reward function: 𝑟 𝑠𝑡 , 𝑎𝑡
• Reward received for being at state 𝑠𝑡 and applying

action 𝑎𝑡

𝑎𝑡

𝑠𝑡 𝑠𝑡+1
𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑠𝑡+2

𝑎𝑡+1

𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝜋𝜃 𝑎𝑡 𝑠𝑡 𝜋𝜃 𝑎𝑡 𝑠𝑡

Policy and Reward

• Control policy (feedback control): 𝜋 𝑎 𝑠
• Parametrized by 𝜃

𝜃: 𝜋𝜃 𝑎 𝑠 ≔ 𝑝 𝑎 𝑠

• Can be stochastic: probability of applying action 𝑎 at
state 𝑠

• Reward function: 𝑟 𝑠𝑡 , 𝑎𝑡
• Reward received for being at state 𝑠𝑡 and applying

action 𝑎𝑡
• Analogous to the cost in optimal control

Extensions of Problem Setup

• Partially observability
• Partially Observable Markov Decision Process (POMDP)
• State not fully known; instead, act based on observations

• Policy: 𝜋𝜃 𝑎|𝑜

• In this class, state 𝑠 will be synonymous with observation 𝑜.

𝑎𝑡

𝑠𝑡 𝑠𝑡+1
𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑠𝑡+2

𝑎𝑡+1

𝑝 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

𝑜𝑡 𝑜𝑡+1

Reinforcement Learning Objective

• Given: an MDP with state space 𝒮, action space 𝒜, transition
probabilities 𝒯, and reward function 𝑟 𝑠, 𝑎

• Objective: Maximize discounted sum of rewards (“return”)

maximize
𝜋𝜃

𝔼

𝑡

𝛾𝑘𝑟 𝑠𝑡 , 𝑎𝑡

• 𝛾 ∈ 0,1 : discount factor – larger roughly means “far-sighted”
• Prioritizes immediate rewards
• 𝛾 < 1 avoids infinite rewards; 𝛾 = 1 is possible if all sequences are finite

• Constraints: often implicit, and part of the objective
• Subject to transition matrix 𝒯 (system dynamics)

Outline

• Reinforcement learning problem setup

• Imitation learning

• Basic ideas in RL

• Model-free value-based RL

• Policy-based and actor-critic RL

Imitation Learning

• Collect data through expert demonstration – sequence of states and
actions, 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑁−1, 𝑎𝑁−1, 𝑠𝑁
• Note: Expert may not be solving maximize

𝜋
𝔼 σ𝑡=0

∞ 𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡

• Learn 𝜋𝜃 𝑎𝑡|𝑠𝑡 from data via regression

Imitation Learning

• Collect data through expert demonstration – sequence of states and
actions, 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑁−1, 𝑎𝑁−1, 𝑠𝑁
• Note: Expert may not be solving maximize

𝜋
𝔼 σ𝑡=0

∞ 𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡

• Learn 𝜋𝜃 𝑎𝑡|𝑠𝑡 from data via regression

Imitation Learning

• Collect data through expert demonstration – sequence of states and
actions, 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑁−1, 𝑎𝑁−1, 𝑠𝑁
• Note: Expert may not be solving maximize

𝜋
𝔼 σ𝑡=0

∞ 𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡

• Learn 𝜋𝜃 𝑎𝑡|𝑠𝑡 from data via regression

• Usually doesn’t work due to “drift”: small mistakes add up, and takes
the system far from trained states
• Sometimes, there can be “tricks” to make imitation learning work!

Autonomous Driving Through Imitation

Bojarski et al. 2016. “End to End Learning for Self-Driving Cars,” CVPR 2016

Training:

Testing:

Dataset Aggregation

• Imitation learning drawback:
• Distribution of observations in training is different from distribution of

observations during test
• Some states have never been seen during demonstration

• How to make the distributions equal?
• Train perfect policy
• Change data set → DAgger (Dataset Aggregation)

Dataset Aggregation (DAgger) Algorithm

1. Train policy from some initial data, 𝒟𝑖 =
𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑁−1, 𝑎𝑁−1, 𝑠𝑁

2. Run policy to obtain new observations 𝑠𝑁+1, 𝑠𝑁+2, … , 𝑠𝑁+𝑀
• Note: time indices and states here may not continue from initial data

3. Use humans to label data by providing actions for new
observations, 𝑎𝑁+1, … , 𝑎𝑁+𝑀−1

• This creates another data set, ഥ𝒟𝑖 =
𝑠𝑁+1, 𝑎𝑁+1, 𝑠𝑁+2, 𝑎𝑁+2… , 𝑎𝑁+𝑀−1, 𝑠𝑁+𝑀

4. Combine two datasets, 𝒟𝑖 ← 𝒟𝑖 ∪ ഥ𝒟𝑖

• Go back to first step

Challenges

• Non-Markovian behaviour
• Perhaps augment state/observation space to include some history

• Use neural networks that implicitly capture time series data: RNNs/LSTMs

• Unnatural data collection
• Humans are probably not very good at collecting correction data in this

manner

• Inconsistencies in human action

Addressing Drift

• Main goal: Teach system to correct errors

• Explicitly demonstrate corrections (DAgger)

• During demonstration, add noise to “force” mistakes, and see how humans
correct them

• Ask humans to intentionally make mistakes

• Prior knowledge and heuristics
• Example: Learn from stabilizing controller

yelp

Imitation Learning Tricks

• Common neural network architectures
• LSTM – since we have time-series data
• CNN – usually in combination with LSTM, if the observations are images

• Simplify action space:
• Driving example: action space simplified to {left, centre, right}

• Clever data collection
• Driving example: side cameras

• Inverse reinforcement learning
• Learn goal, instead of policy, from data
• Use reinforcement learning to learn to achieve the same goal

Imitation Learning Drawbacks

• Very small amount of data – challenging for training deep neural
networks

• Humans are not very good at providing some kinds of actions
• Quadrotor motor speed

• Non-humanoid machines

• Hard to perform better at tasks humans are not very good at

Outline

• Reinforcement learning problem setup

• Imitation learning

• Basic ideas in RL

• Model-free value-based RL

• Policy-based and actor-critic RL

Reinforcement Learning

• Humans can learn without imitation
• Given goal/task

• Try an initial strategy

• See how well the task is performed

• Adjust strategy next time

• Reinforcement learning agent
• Given goal/task in the form of reward function 𝑟 𝑠, 𝑎

• Start with initial policy 𝜋𝜃 𝑎 𝑠 ; execute policy

• Obtain sum of rewards, σ𝑡 𝑟 𝑠𝑡 , 𝑎𝑡
• Improve policy by updating 𝜃, based on rewards

Reinforcement Learning Objective

• Given: an MDP with state space 𝒮, action space 𝒜, transition probabilities
𝒯, and reward function 𝑟 𝑠, 𝑎

• Objective: Maximize expected discounted sum of rewards (“return”)

maximize
𝜋𝜃

𝔼

𝑡=0

∞

𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡

• 𝛾 ∈ 0,1 : discount factor – larger roughly means “far-sighted”
• Prioritizes immediate rewards

• 𝛾 < 1 avoids infinite rewards; 𝛾 = 1 is possible if all sequences are finite

• Constraints: now incorporated into the reward function
• Only constraint (usually implicit): subject to transition matrix 𝒯 (system dynamics)

RL vs. Other ML Paradigms

• No supervisor
• But we will often draw inspiration from supervised learning

• Sequential data in time

• Reward feedback is obtained after a long time
• Many actions combined together will receive reward
• Actions are dependent on each other

• In robotics: lack of data

Reinforcement Learning Categories

• Model-based
• Explicitly involves an MDP model

• Model-free
• Does not explicitly involve an MDP model

• Value based
• Learns value function, and derives policy from value function

• Policy based
• Learns policy without value function

• Actor critic
• Incorporates both value function and policy

Value Functions

• “State-value function”: 𝑉𝜋 𝑠 -- expected return starting from state 𝑠
and following policy 𝜋
• 𝑉𝜋 𝑠 = 𝔼𝑎𝑡~𝜋 σ𝑡=0

∞ 𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡 |𝑠0 = 𝑠

• Expectation is on the random sequence 𝑠0, 𝑎0, 𝑠1, 𝑎1, …

• “Action-value function”, or “𝑸 function”: 𝑄𝜋 𝑠, 𝑎 -- expected return
starting from state 𝑠, taking action 𝑎, and then following policy 𝜋
• 𝑄𝜋 𝑠, 𝑎 = 𝔼𝑎𝑡~𝜋 σ𝑡=0

∞ 𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡 |𝑠0 = 𝑠, 𝑎0 = 𝑎

• Optimal discounted sum of rewards:
• 𝑉𝜋∗ 𝑠 = max

𝜋
𝔼 σ𝑡=0

∞ 𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡 |𝑠0 = 𝑠

• Dynamic programming:
• 𝑉𝜋∗ 𝑠 = max

𝑎𝑡
𝔼 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋∗ 𝑠𝑡+1 |𝑠𝑡 = 𝑠

• 𝑄𝜋∗ 𝑠, 𝑎 = 𝔼 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋∗ 𝑠𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

• Actually, recurrence is true even without maximization
• 𝑉𝜋 𝑠 = 𝔼 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 |𝑠𝑡 = 𝑠

• 𝑄𝜋 𝑠, 𝑎 = 𝔼 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

Principal of Optimality

𝑠𝑡

Ƹ𝑠𝑡+1

ǁ𝑠𝑡+1

ҧ𝑠𝑡+1

ത𝑎𝑡

𝑎𝑡

ො𝑎𝑡

• Optimal discounted sum of rewards:
• 𝑉𝜋∗ 𝑠 = max

𝜋
𝔼 σ𝑡=0

∞ 𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡 |𝑠0 = 𝑠

• Dynamic programming:
• 𝑉𝜋∗ 𝑠 = max

𝑎𝑡
𝔼 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋∗ 𝑠𝑡+1 |𝑠𝑡 = 𝑠

• 𝑄𝜋∗ 𝑠, 𝑎 = 𝔼 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋∗ 𝑠𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

• Actually, recurrence is true even without maximization
• 𝑉𝜋 𝑠 = 𝔼 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 |𝑠𝑡 = 𝑠

• 𝑄𝜋 𝑠, 𝑎 = 𝔼 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

Principal of Optimality

𝑉 𝑠𝑡

𝑉 Ƹ𝑠𝑡+1

𝑉 ǁ𝑠𝑡+1

𝑉 ҧ𝑠𝑡+1

𝑟 𝑠𝑡 , ത𝑎𝑡

𝑟 𝑠𝑡 , ො𝑎𝑡

𝑟 𝑠𝑡 , 𝑎𝑡

Basic Properties of Value Functions

• 𝑉𝜋∗ 𝑠 = max
𝜋

𝑉𝜋 𝑠

• 𝑄𝜋∗ 𝑠, 𝑎 = max
𝜋

𝑄𝜋 𝑠, 𝑎

• 𝑉𝜋∗ 𝑠 = max
𝑎

𝑄𝜋∗ 𝑠, 𝑎

• For now, value functions are stored in multi-dimensional arrays

• DP leads to deterministic policies – we will come back to stochastic policies

• State-value function
• 𝑉𝜋∗ 𝑠 = max

𝑎𝑡
𝔼 𝑟 𝑠𝑡, 𝑎𝑡 + 𝛾𝑉 𝑠𝑡+1 |𝑠𝑡 = 𝑠

• 𝑉𝜋∗ 𝑠 = max
𝑎

𝑟 𝑠, 𝑎 + 𝛾𝔼 𝑉 𝑠𝑡+1 |𝑠𝑡 = 𝑠

• 𝑉𝜋∗ 𝑠 = max
𝑎

𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉𝜋∗ 𝑠
′

• “Bellman backup”: 𝑉 𝑠 ← max
𝑎

𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• This is done for all 𝑠
• Iterate until convergence

• Optimal policy: 𝑎 = argmax
𝑎′

𝑟 𝑠, 𝑎′ + 𝛾σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎′ 𝑉 𝑠′

• Deterministic

Optimizing the RL Objective via DP

𝑉 𝑠𝑡

𝑉 Ƹ𝑠𝑡+1

𝑉 ǁ𝑠𝑡+1

𝑉 ҧ𝑠𝑡+1

𝑟 𝑠𝑡 , ത𝑎𝑡

𝑟 𝑠𝑡 , ො𝑎𝑡

𝑟 𝑠𝑡 , 𝑎𝑡

• Action-value function
• 𝑄𝜋∗ 𝑠, 𝑎 = 𝔼 𝑟 𝑠𝑡, 𝑎𝑡 + 𝛾max

𝑎𝑡+1
𝑄𝜋∗ 𝑠𝑡+1, 𝑎𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

• 𝑄𝜋∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾𝔼 max
𝑎𝑡+1

𝑄𝜋∗ 𝑠𝑡+1, 𝑎𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

• 𝑄𝜋∗ 𝑠, 𝑎 = 𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉𝜋∗ 𝑠
′

• “Bellman backup”:
• 𝑉 𝑠 ← max

𝑎
𝑄 𝑠, 𝑎

• 𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• This is done for all 𝑠 and all 𝑎
• Iterate until convergence

• Optimal policy: 𝑎 = argmax
𝑎′

𝑄 𝑠, 𝑎′

• Deterministic

Optimizing the RL Objective via DP

𝑉 𝑠𝑡

𝑉 Ƹ𝑠𝑡+1

𝑉 ǁ𝑠𝑡+1

𝑉 ҧ𝑠𝑡+1

𝑟 𝑠𝑡 , ത𝑎𝑡

𝑟 𝑠𝑡 , ො𝑎𝑡

𝑟 𝑠𝑡 , 𝑎𝑡

Approximate Dynamic Programming

• Use a function approximator (eg. neural network) 𝑉 𝑠; 𝑤 , where 𝑤
are weights, to approximate 𝑉
• 𝑉 𝑠 is no longer stored at every state

• Weights 𝑤 are updated using Bellman backups

• Basic algorithm: (We will learn about other variants too)
• Sample some states, 𝑠𝑖
• For each 𝑠𝑖, generate ෨𝑉 𝑠𝑖 = max

𝑎
𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠𝑡 , 𝑎 𝑉 𝑠′; 𝑤

• Using 𝑠𝑖 , ෨𝑉 𝑠𝑖 , update weights 𝑤 via regression (supervised learning)

Generalized Policy Evaluation and Policy Improvement

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use policy 𝜋 to update 𝑉 or 𝑄: 𝑎 = 𝜋 𝑠
• 𝑉 𝑠 ← 𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• 𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• In general, any policy evaluation algorithm

• Use 𝑉 or 𝑄 to update policy 𝜋:
• Given 𝑉 s , 𝜋 𝑠 = argmax

𝑎
𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• Given 𝑄 𝑠, 𝑎 , 𝜋 𝑠 = argmax
𝑎

𝑄 𝑠, 𝑎

• In general, any policy improvement algorithm

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm

DP

DP

Convergence

• At convergence, the following are simultaneously satisfied:
• 𝑉 𝑠 = 𝑟 𝑠, 𝑎 + 𝛾 σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• 𝜋 𝑠 = argmax
𝑎′

𝑟 𝑠, 𝑎′ + 𝛾σ𝑠′ 𝑝 𝑠′|𝑠, 𝑎′ 𝑉 𝑠′

• This is the principle of optimality

• Therefore, the value function and policy are optimal

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm

Terminology

• “Value iteration”: The process of iteratively updating value function
• With DP, we only need to keep track of value function 𝑉 or 𝑄, and the policy 𝜋

is implicit – determined from value function

• “Policy iteration”: The process of iteratively updating policy
• This is done implicitly with Bellman backups

• “Greedy policy”: the policy obtained from choosing the best action
based on the current value function
• If the value function is optimal, the greedy policy is optimal

Towards Model-Free Learning

• Policy evaluation
• Monte-Carlo (MC) Sampling

• Temporal-difference (TD)

• Policy improvement
• 𝜖-greedy policies

Monte-Carlo Policy Evaluation

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use policy 𝜋 to update 𝑉: 𝑎 = 𝜋 𝑠
• Apply 𝜋 to obtain trajectory 𝑠0, 𝑎0, 𝑠1, 𝑎1, …

• Compute return: 𝑅 ≔ σ𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡
• Repeat for many episodes to obtain empirical mean

• “Episode”: a single “try” that produces a single trajectory

• Use 𝑉 or 𝑄 to update policy 𝜋

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm

Monte-Carlo Policy Evaluation

• To obtain empirical mean, we record 𝑁 𝑠 , # of times 𝑠 is visited for
every state
• Start at 𝑁 𝑠 = 0 for all 𝑠
• Note that this means storing 𝑁 (and 𝑆 below) at every state

• First-visit MC Policy Evaluation:
• At the first time 𝑡 that 𝑠 is visited in an episode,

• Increment 𝑁 𝑠 ← 𝑁 𝑠 + 1
• Record return 𝑅 𝑠 ← 𝑅 𝑠 + σ𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡
• Repeat for many episodes

• Estimate value: 𝑉 𝑠 =
𝑅 𝑠

𝑁 𝑠

Monte-Carlo Policy Evaluation

• To obtain empirical mean, we record 𝑁 𝑠 , # of times 𝑠 is visited for
every state
• Start at 𝑁 𝑠 = 0 for all 𝑠
• Note that this means storing 𝑁 (and 𝑆 below) at every state

• Every-visit MC Policy Evaluation:
• Every time 𝑡 that 𝑠 is visited in an episode,

• Increment 𝑁 𝑠 ← 𝑁 𝑠 + 1
• Record return 𝑅 𝑠 ← 𝑅 𝑠 + σ𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡
• Repeat for many episodes

• Estimate value: 𝑉 𝑠 ≈
𝑅 𝑠

𝑁 𝑠

Incremental Updates

• Instead of estimating 𝑉𝜋 𝑠 after many episodes, we can update it
incrementally after every episode after receiving return 𝑅
• 𝑁 𝑠 ← 𝑁 𝑠 + 1

• 𝑉 𝑠 ← 𝑉 𝑠 +
1

𝑁 𝑠
𝑅 − 𝑉 𝑠

• More generally, we can weight the second term differently
• 𝑉 𝑠 ← 𝑉 𝑠 + 𝛼 𝑅 − 𝑉 𝑠

Monte-Carlo Policy Evaluation

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use policy 𝜋 to update 𝑉: 𝑎 = 𝜋 𝑠
• MC policy evaluation provides estimate of 𝑉𝜋
• Many episodes are needed to obtain accurate estimate

• Model-free with MC!

• Use 𝑉 or 𝑄 to update policy 𝜋
• Greedy policy?

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm

Monte-Carlo Policy Evaluation

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use policy 𝜋 to update 𝑉: 𝑎 = 𝜋 𝑠
• MC policy evaluation provides estimate of 𝑉𝜋
• Many episodes are needed to obtain accurate estimate

• Model-free with MC!

• Use 𝑉 or 𝑄 to update policy 𝜋
• Greedy policy?

• Greedy policy lacks exploration, so 𝑉𝜋 is not estimated at many states

• 𝜖-greedy policy

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm

𝜖-Greedy Policy

• Also known as 𝜖-greedy exploration

• Choose random action with probability 𝜖
• Typically uniformly random
• If 𝑎 takes on discrete values, then all actions will be chosen eventually

• Choose action from greedy policy with probability 1 − 𝜖
• 𝑎 = argmax

𝑎′
𝑟 𝑠, 𝑎′ + 𝛾σ𝑠 𝑝 𝑠|𝑠𝑡 , 𝑎

′ 𝑉 𝑠

• Still requires model, 𝑝 𝑠|𝑠𝑡 , 𝑎 …
• Solution: 𝑄 function

Monte-Carlo Policy Evaluation

• To obtain empirical mean, we record 𝑁 𝑠, 𝑎 , # of times 𝑠 is visited for
every state
• Start at 𝑁 𝑠, 𝑎 = 0 for all 𝑠 and 𝑎
• Note that this means 𝑁 (and 𝑆 below) must be stored for every 𝑠 and 𝑎

• First-visit MC Policy Evaluation:
• At the first time 𝑡 that 𝑠 is visited in an episode,

• Increment 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
• Record return 𝑅 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + σ𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡
• Repeat for many episodes

• Estimate action-value function: 𝑄 𝑠, 𝑎 =
𝑅 𝑠,𝑎

𝑁 𝑠,𝑎

Incremental Updates

• Instead of estimating 𝑄 𝑠, 𝑎 after many episodes, we can update it
incrementally after every episode after receiving return 𝑅
• 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 +
1

𝑁 𝑠,𝑎
𝑅 − 𝑄 𝑠, 𝑎

• More generally, we can weight the second term differently
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 − 𝑄 𝑠, 𝑎

Monte-Carlo Value Function Estimate

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use policy 𝜋 to update 𝑄: 𝑎 = 𝜋 𝑠
• Repeat for many episodes:

• 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 +
1

𝑁 𝑠,𝑎
𝑅 𝑠, 𝑎 − 𝑄 𝑠, 𝑎

• Use 𝑄 to update policy 𝜋
• 𝜖-greedy policy

• With probability 𝜖, choose random control
• With probability 1 − 𝜖, choose 𝑎 = argmax

𝑎′
𝑄 𝑠, 𝑎′

• Pick 𝜖 =
1

𝑘
, where 𝑘 is the # of algorithm iterations

• Explore less as value function becomes more accurate

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm

Outline

• Reinforcement learning problem setup

• Imitation learning

• Basic ideas in RL

• Model-free value-based RL

• Policy-based and actor-critic RL

DP vs. MC Policy Evaluation

• Suppose the policy 𝜋 is given
• Dynamic Programming

𝑉 𝑠 ← max
𝑎

𝑄 𝑠, 𝑎

𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾

𝑠′

𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′

DP vs. MC Policy Evaluation

• Suppose the policy 𝜋 is given
• Dynamic Programming

𝑉 𝑠 ← max
𝑎

𝑄 𝑠, 𝑎

𝑄 𝑠, 𝑎 ← 𝑟 𝑠, 𝑎 + 𝛾

𝑠′

𝑝 𝑠′|𝑠, 𝑎 𝑉 𝑠′

• Monte-Carlo
• Repeat for many episodes:

𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑅 − 𝑄 𝑠, 𝑎

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′

Temporal-Difference (TD) Policy Evaluation

• Temporal-difference: a class of policy evaluation techniques TD(𝜆)

• Most basic version: TD(0)
• From any state 𝑠, apply policy 𝑎 = 𝜋 𝑠 for one time step, obtain reward
𝑟 𝑠, 𝑎

• Get to next state 𝑠′, and estimate return from then on using 𝑄 function
• Note: next action is also from the same policy, 𝑎′ = 𝜋 𝑠′

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• Repeat for many episodes to obtain 𝑄 𝑠, 𝑎 estimates at many states 𝑠 and
actions 𝑎

Temporal-Difference (TD) Policy Evaluation

• Most basic version: TD(0)
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• Advantages:
• Online algorithm: 𝑄 can be updated during an

episode

• Does not require complete episodes

• Disadvantages:
• System may not be Markov

• Initial 𝑄 can be very bad and 𝑄 may never improve
enough

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′

𝑛-step TD

• TD: Look ahead one step
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• 𝑛-step TD: look ahead 𝑛 steps
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑟 𝑠+1, 𝑎+1 +⋯𝛾𝑛−1𝑟 𝑠+ 𝑛−1 , 𝑎+ 𝑛−1 + 𝛾𝑛𝑄 𝑠+𝑛, 𝑎+𝑛 − 𝑄 𝑠, 𝑎

• MC: Look ahead until the end of the episode

𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′

≔ 𝑅𝑛 𝑠

𝑠1
′ 𝑠2

′ 𝑠3
′

TD(𝜆)

• 𝑛-step return estimate:
• 𝑅𝑛 = 𝑟 𝑠, 𝑎 + 𝛾𝑟 𝑠+1, 𝑎+1 +⋯𝛾𝑛−1𝑟 𝑠+ 𝑛−1 , 𝑎+ 𝑛−1 + 𝛾𝑛𝑄 𝑠+𝑛, 𝑎+𝑛

• 𝜆-return: weighted average of different 𝑛-step returns
• Weights: 1 − 𝜆 𝜆𝑛−1

• Estimated return: 1 − 𝜆 σ𝑛=1
∞ 𝜆𝑛−1𝑅𝑛

• Small 𝜆→ near-future rewards are more important
• Large 𝜆→ far-future rewards are more important

• TD(𝜆) policy evaluation:
• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 1 − 𝜆 σ𝑛=1

∞ 𝜆𝑛−1𝑅𝑛 − 𝑄 𝑠, 𝑎

SARSA Algorithm

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Use 𝜖-greedy policy to update 𝑄: 𝑎, 𝑎′~𝜋 𝑠 , 𝜋 is 𝜖-greedy
• Repeat for many episodes:

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• New policy 𝜋 is derived from new 𝑄
• 𝜖-greedy policy

• With probability 𝜖, choose random control

• With probability 1 − 𝜖, choose 𝑎 = argmax
𝑎′

𝑄 𝑠, 𝑎′

• If 𝜖, 𝛼 ∝
1

𝑘
, then 𝑄 𝑠, 𝑎 → 𝑄𝜋∗ 𝑠, 𝑎

𝜋 𝑄

policy improvement algorithm

policy evaluation algorithm

𝑠

𝑠′

𝑎
𝑟

𝑎′

On-Policy and Off-Policy Learning

• From SARSA:
• Use 𝜖-greedy policy to update 𝑄: 𝑎, 𝑎′~𝜋 𝑠 , 𝜋 is 𝜖-greedy

• Repeat for many episodes: 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• “Behaviour policy”: policy used to collect rewards -- 𝑎~𝜋𝐵 𝑠

• “Target policy”: policy used to estimate future rewards -- 𝑎′~𝜋𝑇 𝑠

• “On-policy learning”: 𝜋𝐵 = 𝜋𝑇
• SARSA is an on-policy learning algorithm

• “Off-policy learning”: 𝜋𝐵 ≠ 𝜋𝑇
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 , where 𝑎~𝜋𝐵 𝑠 , 𝑎′~𝜋𝑇 𝑠

Off-Policy Learning

• Off-policy learning: Behaviour and target policies are different
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 , where 𝑎~𝜋𝐵 𝑠 , 𝑎′~𝜋𝑇 𝑠

• Advantages:
• Learn from observing another agent (eg. human) execute a different policy
• Learn from experience generated from old policies
• Improve two policies at once, while following one policy

• Example: Q-Learning algorithm
• 𝜋𝐵 is 𝜖-greedy with respect to 𝑄
• 𝜋𝑇 is greedy with respect to 𝑄

Q-Learning Algorithm

• Start with initial policy 𝜋 and value function 𝑉 or 𝑄

• Update 𝑄:
• Repeat for many episodes with 𝜖-greedy policy 𝑎~𝜋𝐵 𝑠 :

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• Both the 𝜖-greedy 𝜋𝐵 and the greedy 𝜋𝑇 are derived from 𝑄

• If 𝜖, 𝛼 =
1

𝑘
, then 𝑄 𝑠, 𝑎 → 𝑄𝜋∗ 𝑠, 𝑎

Function Approximation

• So far, 𝑄 𝑠, 𝑎 is stored in a multi-dimensional array
• Model-free, but cannot solve large problems

• Parametrize value functions with parameters (or weights) 𝑤
• 𝑄 𝑠, 𝑎; 𝑤 ≈ 𝑄 𝑠, 𝑎

• Update parameters 𝑤 using MC- or TD-based learning

• Hopefully, 𝑄 is generalizable to different states 𝑠 and actions 𝑎

Fitting to a Known 𝑄𝜋

• Fit 𝑄 𝑠, 𝑎;𝑤 to 𝑄𝜋 𝑠, 𝑎

• Training data: 𝑠𝑖 , 𝑎𝑖 , 𝑄𝜋 𝑠𝑖 , 𝑎𝑖
• The collection of states and actions in training data is denoted 𝑆 and 𝐴

• Gradient with respect to 𝑤:

•
𝜕

𝜕𝑤
𝑄 𝑆, 𝐴;𝑤 − 𝑄𝜋 𝑆, 𝐴

2

2
= 2 𝑄𝜋 𝑆, 𝐴 − 𝑄 𝑆, 𝐴;𝑤

𝜕 𝑄 𝑆,𝐴;𝑤

𝜕𝑤

• Gradient descent:

• 𝑤 ← 𝑤 − 𝛼 𝑄𝜋 𝑆, 𝐴 − 𝑄 𝑆, 𝐴;𝑤
𝜕 𝑄 𝑆,𝐴;𝑤

𝜕𝑤
• In practice, use stochastic gradient descent

minimize
𝑤

𝑄𝜋 𝑆, 𝐴 − 𝑄 𝑆, 𝐴;𝑤
2

2

Monte-Carlo Incremental Weight Updates

• First-visit MC policy evaluation
• At the first time 𝑡 that 𝑠 is visited in an episode,

• Increment 𝑁 𝑠, 𝑎 ← 𝑁 𝑠, 𝑎 + 1
• Record return 𝑅 𝑠, 𝑎 ← 𝑅 𝑠, 𝑎 + σ𝛾𝑡𝑟 𝑠𝑡 , 𝑎𝑡
• Repeat for many episodes

• Estimate action-value function: 𝑄 𝑠, 𝑎 ≈
𝑅 𝑠,𝑎

𝑁 𝑠,𝑎

• Above procedure produces “training data” 𝑆, 𝐴, 𝑅
• Storing a set of 𝑆, 𝐴, 𝑅, etc. is called “experience replay”
• This is as opposed to updating 𝑤 as data is being collected

• Update weights:

• 𝑤 ← 𝑤 − 𝛼 𝑅 − 𝑄 𝑆, 𝐴;𝑤
𝜕 𝑄 𝑆,𝐴;𝑤

𝜕𝑤

• Guaranteed to converge to local optimum

Temporal-Difference Incremental Weight Updates

• Most basic version: TD(0)
• From any state 𝑠, apply policy 𝑎 = 𝜋 𝑠 for one time step, obtain reward 𝑟 𝑠, 𝑎
• Get to next state 𝑠′, and estimate return from then on using 𝑄 function

• 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 𝑠, 𝑎 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎

• Repeat for many episodes to obtain 𝑄 𝑠, 𝑎 estimates at many states 𝑠 and actions 𝑎

• Above procedure produces a collection of current and next states and
actions, 𝑆, 𝐴, 𝑅, 𝑆′, 𝐴′

• Update weights using TD target:

• 𝑤 ← 𝑤 − 𝛼 𝑅 + 𝛾 𝑄 𝑆′, 𝐴′; 𝑤 − 𝑄 𝑆, 𝐴; 𝑤
𝜕 𝑄 𝑆,𝐴;𝑤

𝜕𝑤

• Not always guaranteed to converge to local minimum

Q-Learning With Function Approximation

Goal: Given a set of weights 𝑤−, find the next set of weights 𝑤 in
𝑄 𝑠, 𝑎; 𝑤

1. From any state 𝑠, apply 𝜖-greedy policy with respect to 𝑄 𝑠, 𝑎; 𝑤−

• This produces a collection 𝑆, 𝐴, 𝑅, 𝑆′

2. Sample from the above collection to obtain a smaller data set
ሚ𝑆, ሚ𝐴, ෨𝑅, ሚ𝑆′

3. Update weights using stochastic gradient descent

minimize
𝑤

෨𝑅 + 𝛾max
𝑎′

𝑄 ሚ𝑆′, 𝑎′; 𝑤− − 𝑄 ሚ𝑆, ሚ𝐴;𝑤
2

2

• Use deep 𝑄-network (DQN) for 𝑄 ሚ𝑆, ሚ𝐴;𝑤 → deep Q-learning

Deep Q-Learning Example: Atari Games
• Minh et al. “Playing Atari with Deep Reinforcement Learning,” 2013

• States: pixels from last few frames

• Actions: controls in the game

• Reward: game score

• Deep Q network: convolutional and fully connected layers

Deep Q-Learning: Robotic Arms

• Gu et al. “Deep Reinforcement Learning for
Robotic Manipulation with Asynchronous Off-
Policy Updates,” 2017.

• States: joint angles, end-effector positions, and
their time derivatives, target position

• Actions: joint velocities of arm, torque of fingers

• Task: open door, pick up object and place it
elsewhere

• Deep Q network: two fully connected hidden
layers, 100 units each

• Main challenge: use multiple robots to learn at the
same time and share knowledge

Outline

• Reinforcement learning problem setup

• Imitation learning

• Basic ideas in RL

• Model-free value-based RL

• Policy-based and actor-critic RL

Categories of RL

• Model-based
• Explicitly involves an MDP model

• Model-free
• Does not involve an MDP model

• Value based
• Learns value function, and derives policy from value function

• Policy based
• Learns policy without value function

• Actor critic
• Incorporates both value function and policy

Policy Gradients

• If we executed a policy 𝜋𝜃 from state 𝑠0, we obtain a trajectory
• 𝜏 ≔ 𝑠0, 𝑎0, 𝑠1, 𝑎1, …
• Note: this is a random variable

• The return is given by 𝑅 𝜏 ≔ σ𝑡≥0 𝛾
𝑡𝑟 𝑠𝑡 , 𝑎𝑡

• Also a random variable

• Expected return given parameters 𝜃: 𝐽 𝜃 ≔ 𝔼𝜏~𝑝 𝜏;𝜃 𝑅 𝜏

• Parameters for the optimal policy:
• 𝜃∗ = argmax

𝜃
𝔼𝜏~𝑝 𝜏;𝜃 𝑅 𝜏

Policy Gradients

• Strategy: differentiate 𝐽 𝜃 w.r.t. 𝜃 and perform stochastic gradient
ascent
• Do this in a way that is model-free and computationally tractable

Policy Gradients

• Strategy: differentiate 𝐽 𝜃 w.r.t. 𝜃 and perform stochastic gradient
ascent
• Do this in a way that is model-free and computationally tractable

Policy Gradients

• Strategy: differentiate 𝐽 𝜃 w.r.t. 𝜃 and perform stochastic gradient
ascent
• Do this in a way that is model-free and computationally tractable

Policy Gradients

• Strategy: differentiate 𝐽 𝜃 w.r.t. 𝜃 and perform stochastic gradient
ascent
• Do this in a way that is model-free and computationally tractable

Policy Gradients

• Strategy: differentiate 𝐽 𝜃 w.r.t. 𝜃 and perform stochastic gradient
ascent
• Do this in a way that is model-free and computationally tractable

• To achieve this
• Write out 𝐽 𝜃

• Take gradient

• Do a math trick

• Obtain gradient expression that can be estimated easily

Write Out 𝐽 𝜃 and Take Gradient

• 𝐽 𝜃 ≔ 𝔼𝜏~𝑝 𝜏;𝜃 𝑅 𝜏

• 𝐽 𝜃 = 𝜏𝑅 𝜏 𝑝 𝜏; 𝜃 𝑑𝜏

• ∇𝜃𝐽 𝜃 = 𝜏𝑅 𝜏 ∇𝜃𝑝 𝜏; 𝜃 𝑑𝜏

• Hard…

Log Gradient Trick

• ∇𝜃𝐽 𝜃 = 𝜏𝑅 𝜏 ∇𝜃𝑝 𝜏; 𝜃 𝑑𝜏

• Trick:

• ∇𝜃𝑝 𝜏; 𝜃 = 𝑝 𝜏; 𝜃
∇𝜃𝑝 𝜏;𝜃

𝑝 𝜏;𝜃
= 𝑝 𝜏; 𝜃 ∇𝜃 log 𝑝 𝜏; 𝜃

• ∇𝜃𝐽 𝜃 = 𝜏𝑅 𝜏 𝑝 𝜏; 𝜃 ∇𝜃 log 𝑝 𝜏; 𝜃 𝑑𝜏

• ∇𝜃𝐽 𝜃 = 𝔼𝜏~𝑝 𝜏;𝜃 𝑅 𝜏 ∇𝜃 log 𝑝 𝜏; 𝜃

• Gradient is an expectation – can estimate this using techniques we learned
before!

Model-Free Estimate of Gradient

• ∇𝜃𝐽 𝜃 = 𝔼𝜏~𝑝 𝜏;𝜃 𝑅 𝜏 ∇𝜃 log 𝑝 𝜏; 𝜃

• 𝑝 𝜏; 𝜃 = ς𝑡≥0 𝑝 𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡 𝜋𝜃 𝑎𝑡|𝑠𝑡
• log 𝑝 𝜏; 𝜃 = σ𝑡≥0 log 𝑝 𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡 + log 𝜋𝜃 𝑎𝑡|𝑠𝑡
• ∇𝜃 log 𝑝 𝜏; 𝜃 = σ𝑡≥0∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

• Amazingly, model-free

• Markov property is not used

• ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 is known: since the form of 𝜋𝜃 is known
• Eg. Backprop if 𝜋𝜃 is a neural network

Monte-Carlo Gradient Estimate

• Results so far:
• ∇𝜃𝐽 𝜃 = 𝔼𝜏~𝑝 𝜏;𝜃 𝑅 𝜏 ∇𝜃 log 𝑝 𝜏; 𝜃

• ∇𝜃 log 𝑝 𝜏; 𝜃 = σ𝑡≥0∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

• Some more algebra to write out gradient of ∇𝜃𝐽 𝜃
• ∇𝜃𝐽 𝜃 = 𝔼𝜏~𝑝 𝜏;𝜃 𝑅 𝜏 σ𝑡≥0∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡
• ∇𝜃𝐽 𝜃 = 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0𝑅 𝜏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

• ∇𝜃𝐽 𝜃 ≈
1

𝑁
σ𝑖=1
𝑁 σ𝑡≥0𝑅 𝜏𝑖 ∇𝜃 log 𝜋𝜃 𝑎𝑡,𝑖|𝑠𝑡,𝑖

REINFORCE Algorithm

• (Monte-Carlo Policy Gradient)

• Use policy 𝜋𝜃 𝑎 𝑠 to obtain trajectories 𝜏𝑖 = 𝑠0,𝑖 , 𝑎0,𝑖 , …

• Estimate the gradient of the reward
• ∇𝜃𝐽 𝜃 ≈ σ𝑖=1

𝑁 σ𝑡≥0𝑅 𝜏𝑖 ∇𝜃 log 𝜋𝜃 𝑎𝑡,𝑖|𝑠𝑡,𝑖

• Update policy parameters via (stochastic) gradient ascent
• 𝜃 ← 𝜃 + 𝛼 ∇𝜃𝐽 𝜃

Observation 1

• Gradient estimate:
• ∇𝜃𝐽 𝜃 = 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0𝑅 𝜏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡
• ∇𝜃𝐽 𝜃 ≈ σ𝑖=1

𝑁 σ𝑡≥0𝑅 𝜏𝑖 ∇𝜃 log 𝜋𝜃 𝑎𝑡,𝑖|𝑠𝑡,𝑖

• Gradient estimate also works for POMDPs without modification

• Parameter updates: 𝜃 ← 𝜃 + 𝛼 ∇𝜃𝐽 𝜃
• Trajectories have high reward will be made more likely

• Trajectories with low reward will be made less likely

• A high-reward trajectory has good actions… on average

𝑅 𝜏1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,1|𝑠𝑡,1

𝑅 𝜏2

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,2|𝑠𝑡,2

𝑅 𝜏3

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,3|𝑠𝑡,3

Suppose
• 𝑅 𝜏1 = 2
• 𝑅 𝜏2 = −1
• 𝑅 𝜏3 = 1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,1|𝑠𝑡,1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,2|𝑠𝑡,2

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,3|𝑠𝑡,3

Observation 1

• Gradient estimate:
• ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0𝑅 𝜏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡
• ∇𝜃𝐽 𝜃 ≈ σ𝑖=1

𝑁 σ𝑡≥0𝑅 𝜏𝑖 ∇𝜃 log 𝜋𝜃 𝑎𝑡,𝑖|𝑠𝑡,𝑖

• Gradient estimate also works for POMDPs without modification

• Parameter updates: 𝜃 ← 𝜃 + 𝛼 ∇𝜃𝐽 𝜃
• Trajectories have high reward will be made more likely

• Trajectories with low reward will be made less likely

• A high-reward trajectory has good actions… on average

Observation 2

• Gradient estimate:
• ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0𝑅 𝜏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

• Causality?
• 𝑅 𝜏 is the reward of the entire trajectory

• 𝑅 𝜏 is multiplied in every term of the sum

• 𝜏 includes times before 𝑡

• So, according to the above, the weight of ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡 depends on times
prior to 𝑡?

• Simple fix:

• ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0 σ𝑡′≥𝑡 𝛾
𝑡′−𝑡𝑟 𝑠𝑡 , 𝑎𝑡 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

Observation 3

• Gradient estimate:
• ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0𝑅 𝜏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

𝑅 𝜏1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,1|𝑠𝑡,1

𝑅 𝜏2

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,2|𝑠𝑡,2

𝑅 𝜏3

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,3|𝑠𝑡,3

Suppose
• 𝑅 𝜏1 = 2
• 𝑅 𝜏2 = −1
• 𝑅 𝜏3 = 1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,1|𝑠𝑡,1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,2|𝑠𝑡,2

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,3|𝑠𝑡,3

Observation 3

• Gradient estimate:
• ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0𝑅 𝜏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

𝑅 𝜏1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,1|𝑠𝑡,1

𝑅 𝜏2

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,2|𝑠𝑡,2

𝑅 𝜏3

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,3|𝑠𝑡,3

Suppose
• 𝑅 𝜏1 = 10
• 𝑅 𝜏2 = 7
• 𝑅 𝜏3 = 9

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,1|𝑠𝑡,1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,2|𝑠𝑡,2

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,3|𝑠𝑡,3

Observation 3

• Gradient estimate:
• ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0𝑅 𝜏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

• Performance is measured by reward 𝑅 𝜏
• But what is considered “good”?
• Need a baseline of comparison!

• ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0 𝑅 𝜏 − 𝑏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡
• Fact: expectation is unchanged as long as 𝑏 does not depend on 𝜃

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,1|𝑠𝑡,1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,2|𝑠𝑡,2

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,3|𝑠𝑡,3

𝑅 𝜏1

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,1|𝑠𝑡,1

𝑅 𝜏2

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,2|𝑠𝑡,2

𝑅 𝜏3

𝑡≥0

∇𝜃 log 𝜋𝜃 𝑎𝑡,3|𝑠𝑡,3

Suppose
• 𝑅 𝜏1 = 10
• 𝑅 𝜏2 = 7
• 𝑅 𝜏3 = 9

Revised REINFORCE

• (Monte-Carlo Policy Gradient)

• Use policy 𝜋𝜃 𝑎 𝑠 to obtain a trajectory 𝜏 = 𝑠0, 𝑎0, …

• Estimate the gradient of the reward

• ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0 σ𝑡′≥𝑡 𝛾
𝑡′−𝑡𝑟 𝑠𝑡 , 𝑎𝑡 − 𝑏 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

• Update policy parameters via (stochastic) gradient ascent
• 𝜃 ← 𝜃 + 𝛼 ∇𝜃𝐽 𝜃

Picking a Baseline

• Many choices

• One intuitive choice
• 𝑏 = 𝑉𝜋 𝑠
• Define 𝒜𝜋 𝑠, 𝑎 ≔ 𝑟 𝑠, 𝑎 + 𝛾𝑉𝜋 𝑠′ − 𝑉𝜋 𝑠

• Good action: one that gives a return that is large relative to 𝑉
• Bad action: one that gives a return that is small relative to 𝑉

• 𝒜𝜋 𝑠, 𝑎 -- “advantage function”

• But we don’t know 𝑉…
• Learn it!

Actor-Critic Methods

• Actor (policy 𝜋) decides which actions to take

• Critic (value function 𝑉) decides how good the action is

Actor-Critic Methods

• Basic algorithm, combining everything we’ve learned:
1. Start with some initial policy 𝜋𝜃 and value function 𝑉 𝑠;𝑤

• 𝜃 and 𝑤 are parameters

2. Collect data 𝑆, 𝑅, 𝑆′ by executing policy

3. Update 𝑉𝜙: minimize
𝑤

෨𝑅 + 𝛾 𝑉 ሚ𝑆′; 𝑤− − 𝑉 ሚ𝑆; 𝑤
2

2

• Many methods (eg. stochastic gradient descent)

4. Estimate policy gradient: ∇𝜃𝐽 𝜃 ≈ 𝔼𝜏~𝑝 𝜏;𝜃 σ𝑡≥0
෨𝑅 + 𝛾𝑉𝜋 ሚ𝑆′ − 𝑉𝜋 ሚ𝑆 ∇𝜃 log 𝜋𝜃 𝑎𝑡|𝑠𝑡

5. Improve policy via gradient ascent: 𝜃 ← 𝜃 + 𝛼∇𝜃𝐽 𝜃

6. Repeat 2-5 many times

State-of-the-Art Policy Gradient Methods

• Trust region policy optimization (TRPO)
• https://arxiv.org/abs/1502.05477

• Proximal policy optimization (PPO)
• https://arxiv.org/abs/1707.06347

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347

