◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

Recurrent Neural Networks CMPT 419/726 Mo Chen SFU Computing Science Mar. 16, 2020

Goodfellow, Bengio, and Courville: Deep Learning textbook Ch. 10

Sequential Data with Neural Networks

- Sequential input / output
 - Many inputs, many outputs $x_{1:T} \rightarrow y_{1:S}$
 - e.g. object tracking, speech recognition with HMMs; on-line/batch processing
 - One input, many outputs $x \rightarrow y_{1:S}$
 - e.g. image captioning
 - Many inputs, one output $x_{1:T} \rightarrow y$
 - e.g. video classification

Examples

Recurrent Neural Networks

Long Short-Term Memory

Temporal Convolutional Networks

Examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のQで

Recurrent Neural Networks

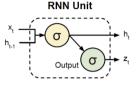
Long Short-Term Memory

Temporal Convolutional Networks

Examples

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q ()

Hidden State



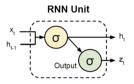
< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . のへで

- Basic idea: maintain a state h_t
- State at time t depends on input xt and previous state nt-1
- It's a neural network, so relation is non-linear function of these inputs and some parameters W:

$$h_t = f_x(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t; \boldsymbol{W}) = \sigma(W_x x_t + W_h h_{t-1})$$

• Parameters W and function $f(\cdot)$ reused at all time steps

Outputs



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

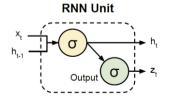
• Output *z*_t also depends on the hidden state:

$$z_t = f_z(\boldsymbol{h}_t; \boldsymbol{W}_z) = \sigma(W_z h_t)$$

Again, parameters/function reused across time

Recurrent neural network (RNN)

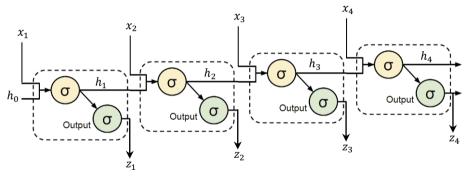
- Has feedback loops to capture temporal or sequential information
- Has the ability to learn tasks that require "memory" of events from many time steps ago
- Long short-term memory (LSTM): special type of RNN with advantages in numerical properties



イロト イヨト イヨト イヨト

э.

Unfolding an RNN



$$\label{eq:ht} \begin{split} h_t &= f_x(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t; \boldsymbol{W}) \\ h_0 \text{ can be a vector of all zeros, or trained} \end{split}$$

 $z_t = f_z(\boldsymbol{h}_t; \boldsymbol{W}_z)$

Vanishing Gradients in RNN

$$h_t = \sigma(W_x x_t + W_h h_{t-1}) \qquad \qquad z_n = f(\boldsymbol{h}_n; \boldsymbol{W}_z)$$

- Training requires $\frac{\partial E_n}{\partial W_x} = \sum_{i=1}^n \frac{\partial E_n}{\partial z_n} \frac{\partial z_n}{\partial h_n} \frac{\partial h_n}{\partial h_i} \frac{\partial h_i}{\partial W_x}$
 - Everything except $\frac{\partial h_n}{\partial h_i}$ involves "nearby" variables, so

focus on
$$\frac{\partial h_n}{\partial h_i}$$

RNN Unit

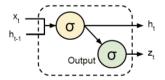
$$\frac{\partial h_n}{\partial h_i} = \frac{\partial h_n}{\partial h_{n-1}} \frac{\partial h_{n-1}}{\partial h_{n-2}} \cdots \frac{\partial h_{i+1}}{\partial h_i} = \prod_{t=i}^{n-1} \frac{\partial h_{t+1}}{\partial h_t}$$

$$\downarrow \frac{\partial h_{t+1}}{\partial h_t} = \frac{\partial}{\partial h_t} f_x(h_t, x_{t+1}; W_x)$$

$$= \sigma'(W_x x_{t+1} + W_h h_t) W_h$$

$$\frac{\partial h_n}{\partial h_i} = \prod_{t=i}^{n-1} \sigma'(W_x x_{t+1} + W_h h_t) W_h$$

$$= W_h^{n-1} \prod_{t=i}^{n-1} \sigma'(W_x x_{t+1} + W_h h_t)$$



• Gradient blows up if largest eigenvalue of W_h is larger than 1

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . のへで

Gradient vanishes otherwise

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . のへで

Gradients

- Basic RNN not very effective
- Need many time steps / complex model for challenging tasks
- Gradients in learning are a problem
 - Too large: can be handled with gradient clipping (truncate gradient magnitude)
 - Too small: can be handled with network structures / gating functions (LSTM, GRU)

Examples

Recurrent Neural Networks

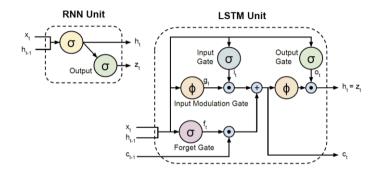
Long Short-Term Memory

Temporal Convolutional Networks

Examples

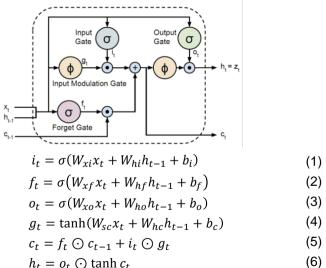
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のQで

Long Short-Term Memory



- Hochreiter and Schmidhuber, Neural Computation 1997
 - (Figure from Donohue et al. CVPR 2015)
- Gating functions $g(\cdot), f(\cdot), o(\cdot)$ reduce vanishing gradients

Long Short-Term Memory



Long Short-Term Memory

Let's consider $\frac{\partial c_t}{\partial c_{t-1}}$

- Full derivative of error function w.r.t. weights will be a product of these
- Note $c_t = c_t(f_t, c_{t-1}, i_t, g_t)$, where f_t, i_t, g_t also depend on c_{t-1}

$$i_t = \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i)$$

$$f_t = \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f)$$

$$o_t = \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o)$$

$$g_t = \tanh(W_{sc}x_t + W_{hc}h_{t-1} + b_c)$$

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t$$

$$h_t = o_t \odot \tanh c_t$$

 $\frac{\partial c_t}{\partial c_{t-1}} = \frac{\partial c_t}{\partial f_t} \frac{\partial f_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial c_{t-1}} + \frac{\partial c_t}{\partial c_{t-1}} + \frac{\partial c_t}{\partial i_t} \frac{\partial i_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial c_{t-1}} + \frac{\partial c_t}{\partial g_t} \frac{\partial g_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial c_{t-1}}$

 $=c_{t-1}\sigma'(\cdots)W_{hf}o_{t-1}\tanh'(c_{t-1})+f_t+g_t\sigma'(\cdots)W_{hi}\tanh'(c_{t-1})+i_t\tanh'(\cdots)W_{hc}\tanh'(c_{t-1})$

Discussion:

- When repeatedly multiplying four different terms added together, there is a smaller chance of vanishing compared to a single term
- *f_t* can be chosen to be larger or smaller, depending on whether the gradients should propagate backwards to before stage *t*
- f_t is learned, so neural network learns to control gradient propagation
- · Vanishing gradients is alleviated, not solved
- Gradients may still explode as well

Recurrent Neural Networks

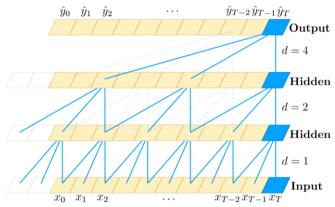
Long Short-Term Memory

Temporal Convolutional Networks

Examples

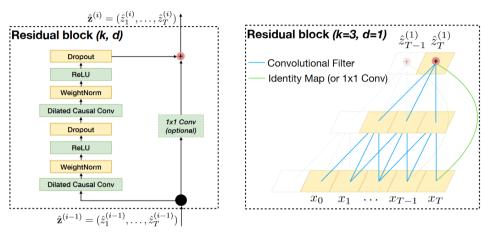
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q ()

Convolutions to Aggregate over Time



- Control history by d (dilation, holes in the filter) and k (width of the filter)
- · Causal convolution, only use elements from the past
- Bai, Kolter, Koltun arXiv 2018

Residual (skip) Connections



 Include residual connections to allow long-range modeling and gradient flow

Examples

Recurrent Neural Networks

Long Short-Term Memory

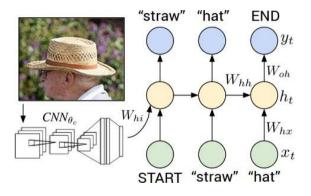
Temporal Convolutional Networks

Examples

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = の�@

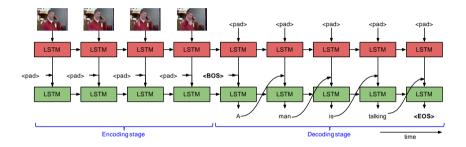
Example: Image Captioning



Karpathy and Fei-Fei, CVPR 2015

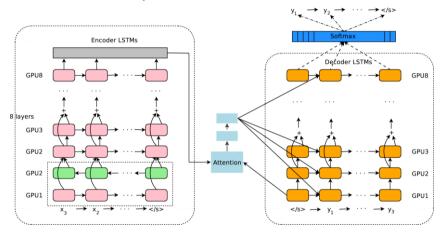
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Example: Video Description



 S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, K. Saenko, ICCV 2015

Example: Machine Translation



• Wu et al., Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation, arXiv 2016

Conclusion

- Readings:
 - <u>http://www.deeplearningbook.org/</u> <u>contents/rnn.html</u>
 - https://medium.com/datadriveninvestor/howdo-lstm-networks-solve-the-problem-ofvanishing-gradients-a6784971a577
 - https://weberna.github.io/blog/2017/11/15/L STM-Vanishing-Gradients.html
- Recurrent neural networks, can model sequential inputs/outputs
 - Input includes state (output) from previous time
 - Different structures:
 - RNN with multiple inputs/outputs
 - Gated recurrent unit (GRU)
 - Long short-term memory (LSTM)
 - Error gradients back-propagated across entire sequence