
2020-03-10

1

CMPT 165, Spring 2020
More CSS

More CSS

• We haven't talked much about how to move things around the
page in CSS.

• Fonts, spacing, borders, etc are all relatively easy. The hard part is
moving things to where you want them.

• There are a few ways to position elements around the page…

1

2

2020-03-10

2

Float

• The float property is often the easiest way to move things around.

• It's old and supported in every browser, but not the most intuitive.

• Let's start with some HTML to work with:

float property

<h2>Part 1</h2>
<figure id="happy">
<img src="happy.png" alt="happy
face" />
</figure>
<p>…</p>
<h2>Part 2</h2>
<p>…</p>

A happy.png file to
work with

Float

• We can move the figure to the left like this:

• The following content flow around it and automatically avoids it: you
won't get content overlapping.

#happy {
float: left;
}

3

4

2020-03-10

3

Float

• That works well for a small image around the ”main” text, but the way you
want to move things around doesn't always map nicely to a float.

• e.g. a menu across the top of a page, or down the side of a page.

Clear

• When floating content, you often don't know exactly how much space floating
content will take, and you don't want some content beside other stuff.

• e.g. you don't want to start a section (<section> or <h2>) beside a float from the
previous content.

• e.g. you don't want code examples (<pre> or <blockquote><code>) with stuff
floating beside (because of width restrictions).

5

6

2020-03-10

4

Clear

• The clear property lets us express move down past any floating content.

• With this, if a <section> starts where something is floating on the left
side, move down until the margin is clear.

clear propert
y

section {
clear: left;

}

Position

• A more powerful tool: the position property.

• Using position give more flexibility in how you place things, but creates the danger of overlapping
and unreadable content.

• If you set position: absolute, you can then move the element to exactly where you want (relative
to the browser window or viewport).

• This lets you set the top, bottom, left, right properties to move the corresponding edge of the
viewport.

position proper
ty

7

8

2020-03-10

5

Position

• For example, this will put the header 1em from the top of the viewport, and directly
against the left of the page.

header {
position: absolute;
top: 1em;
left: 0em;

}

Position

• But position absolute removes the element from the flow of the rest of the
content: it will go where you put it, even if that's overlapping other content.

• It's now your responsibility to make sure there's nothing else in that space.
• For example, it's easy to move an element to somewhere other content

would also be placed:

#happy {
position: absolute;
left: 1em;
top: 1em;

}

9

10

2020-03-10

6

Position

• Maybe that's okay if we deal with that element appropriately. Here, make it
mostly-transparent and behind the other content.

#happy {
position:absolute;
left: 1em;
top: 1em;
opacity: 0.25;
z-index: -1;
}

Position

• Or we could move everything else, making enough room for it:

11

12

2020-03-10

7

Position

• Or, we could make sure the top 5em of the page is exclusively for
the header. Then position in that top 5em however we like.

Position

• Other values for position:
• static: the default.
• relative: move from the place it would have started (with

static position, using top, left, etc), but its space is still there.
• fixed: like static, but relative to the window: doesn't move

when scrolled.

13

14

2020-03-10

8

Position

• Absolute positioning isn't actually within the page. It's within the ancestor element that
has a non-static position. (And the same for float.)

• e.g. in assignment 3, I suggested the main story area be position: relative (with no top, left,
etc) so you could move things around inside it.

CSS Grids

• More recently, there is another way to move stuff around that makes a
lot more sense: CSS grids. They are almost supported well enough that
I'd be comfortable using them.

• The idea is much more like what I think of when imagining the layout of
a page: a blocks on the page, and each element takes up some of the
blocks.

caniuse.com: grid-
template-columns

15

16

2020-03-10

9

CSS GRIDS

• We start by making a grid with a certain number of columns. Maybe something like:

• This creates three columns, taking up half, a quarter, and a quarter of the available
width.

grid-template-
columns property

CSS GRIDS

• When an element gets display: grid, all of its child elements will be blocks in the grid.

• We will be able to move elements around to take up whatever blocks we want…

• Let's try a page with a fairly-realistic structure of a header, navigation menu, and main
content:

• We will turn the whole <body> into a grid, and we have three elements in it. [Complete file: grid.html.]

17

18

2020-03-10

10

CSS GRIDS

• The markup is semantically-meaningful, as it should be. Now appearance: I want a layout like
this:

<header> tag

<nav> tag

<main> tag

CSS GRIDS

• For that, I need two columns, with the first wider than the second. That can be expressed:

• The fr unit: fractions of the page. Here, the first column is 3× the second.

19

20

2020-03-10

11

CSS GRIDS

• We also need to say that the header will span two columns:

• That gets us the layout we want, but with the navigation on the left: elements fill the available blocks
left-to-right.

• We could swap the order of the <nav> and <main> in HTML, but that's weird semantically.

CSS GRIDS

• We just need to move the <nav> to the second column, and then <main> back up to the second row
(below the header):

21

22

2020-03-10

12

CSS GRIDS

• Overall, it seems to be a much easier way to format a page. It shouldn't be too long before
it's supported well enough to use.

CSS Grid by Example[More complete CSS: grid.css.]

Responsive Design

• An important fact to remember: not every web browser is the same size as yours.

• Phones exist. Different people have different sized screens. Some people don't maximize the
browser window.

• What your page looks like in different size windows isn't always easy to predict: test as much as
you can.

• Many beginners use position: absolute (or similar) in a way that looks perfect in exactly one
screen size

23

24

2020-03-10

13

Responsive Design

• A responsive design is one that works well on a wide variety of devices. Probably
screen/ window size is the most important difference.

• At least try shrinking your browser window, and zoom out/in (with ctrlௗ- and ctrlௗ+). Or just
try the page on your phone.

• One common problem on large screens: lines too long to easily read. My usual base
stylesheet to make things readable:

Responsive Design

• Also, we need to make one addition to the HTML <head> to make pages work well on
mobile:

• Details aside, this says to the browser: “I know mobile devices exist and I'll deal with it”. It
turns off mobile browsers' attempts to make pages from 1999 look readable on a
smartphone.

25

26

2020-03-10

14

Media Queries

• Very basic CSS will probably look fine on any size screen, but as soon as you start moving
things around, a small screen can be too small.

• This is particularly true if you are putting elements beside each other (like we did with
float, position, grids).

• CSS lets you give rules that only apply only in some circumstances with media queries.

• The idea: we have a @media (…) {…} block that expresses “when the device has these
properties …, apply these CSS rules….”

Media Queries

• e.g. on a phone-width screen, turn off the floating for figures, and just centre them as a
separate block.

27

28

2020-03-10

15

Media Queries

• This media query targets browsers with width ≤480ௗpixels. On screens that narrow, we can
modify as we like.

Media Queries

• Similarly, we can rearrange our grid example for small screens: each block takes the full
width (two columns), and the <main> goes below the <nav>. [More in grid.css.]

29

30

2020-03-10

16

Media Queries

• We can also target the page when it's being printed:

Media Queries

• There is a lot of power in media queries to make responsive pages.

• Generally, you only really need to solve problems you caused
yourself: if you position things, think about how they will look on
different-sized screens.

Media query reference

Media Queries for Standard Devices

31

32

2020-03-10

17

CSS Frameworks

• CSS positioning can be hard, especially if you want to be responsive. There
are some page elements that many people want to style in similar ways, and
we're repeating ourselves.

• Much like jQuery and Raphaël for JavaScript, somebody else can write a
bunch of code for us and we can use it.

• This leads to CSS frameworks: pre-packaged CSS code that solves a wide
variety of common CSS problems.

• We have seen CSS resets: maybe those are very minimalist CSS frameworks?

Bootstrap

• Bootstrap is the most commonly-used CSS framework. Originally created by Twitter.

• Getting started: link their stylesheet (and your own).

• Right away, some basic page styles change to prettier defaults.

<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css
" />
<link rel="stylesheet" href="customize.css" />

[Complete file: bootstrap-demo.html.]

33

34

2020-03-10

18

Bootstrap

• Beyond the default changes, Bootstrap gives you get many classes: just apply them to
elements.

• Probably the most useful is the grid. The Bootstrap grid is separate from the CSS display:
grid functionality, and more broadly compatible.

• With the Bootstrap grid, your page is divided into 12 columns. You can put your elements
into one or more of them.

Bootstrap

• For example: a menu that takes up a quarter of the page, and main
content to the right. We just add the classes in HTML to activate the
right Bootstrap features.

35

36

2020-03-10

19

Bootstrap

• We can move things around without worrying about the CSS details
ourselves, but at the expense of having appearance-related stuff leak into
the HTML.

• We can also specify different grid layouts for different-sized browser
windows. (sm, md, lg, xl)

Bootstrap

• For example, these elements will be full-width on small screens, but 25% and 75% columns on
medium (720px) and larger:

• [In class="", multiple classes are separated by space.]

37

38

2020-03-10

20

Bootstrap

• Maybe the biggest drawback: lots of sites use Bootstrap. A page
using its standard styles look a little too much like many other
sites.

Bootstrap documentation

39

