
Sorting and Searching
CMPT 125

Mo Chen

SFU Computing Science

22/1/2020

Lecture 9

Today:

● Introduction to sorting

● Selection sort

“Charlie”

Sorting

Goal: Place a collection of items in order from

smallest to largest.

● Order depends on the type of the items

● For numbers, it’s by value

8 10 5 -5 -5 5 8 10

“Deb” “Alice” “Bob”“Charlie” “Alice” “Bob” “Deb”

a <= b

strcmp(a, b) <= 0

● For strings, it’s alphabetical order

Why is Sorting Useful?

● A core algorithm in computer science, studied in

depth for many many years.
○ sometimes important in its own right.

○ sometimes applied as a step in a larger algorithm.

● Our purpose isn’t to learn to implement a sort
○ (but you probably will write one or two sorts in Lab)

○ many excellent implementations are out there

○ every programming language has a library sort

● Our purpose is to understand the techniques

that are used and the analysis to evaluate them

Simple Sorting

● As an example of algorithm analysis let’s

look at two simple sorting algorithms
○ Selection Sort

○ Insertion Sort

● Predict the running time for each sorting

algorithm by counting the operations
○ most expensive (i.e., frequent) operations are the

comparison and movement of objects

○ compare sorting algorithms using Big-O

Selection Sort

Main idea: Repeatedly find the smallest item,

and move it into position using a swap

● Start by finding the smallest element. Say its

position is at index minpos

● Exchange A[0] ↔ A[minpos]

● Now think of the array as in two parts: a sorted part

(A[0..0]) and an unsorted part (A[1..n-1]).

● Find the smallest element of the unsorted part

● Exchange it with A[1]

● The sorted part is now A[0..1], unsorted part is

now A[2..n-1].

● Find the next min, . . .

How many

comparisons

for an array of

length N?

Selection Sort Demo

Sort this array using Selection Sort:

82 50 12 68 17 95 35 23

12 50 82 68 17 95 35 23

12 17 82 68 50 95 35 23

12 17 23 68 50 95 35 82

12 17 23 35 50 95 68 82

12 17 23 35 50 95 68 82

12 17 23 35 50 68 95 82

12 17 23 35 50 68 82 95

find smallest unsorted item in 7 comparisons

find smallest unsorted item in 6 comparisons

find smallest unsorted item in 5 comparisons

find smallest unsorted item in 4 comparisons

find smallest unsorted item in 3 comparisons

find smallest unsorted item in 2 comparisons

find smallest unsorted item in 1 comparison

find smallest unsorted item???95

void SelectionSort(int arr[], int len) {

}

● Determine minpos, the index of the smallest

element of arr[i..len-1]

● Algorithm: linear scan

Selection Sort in C

● Repeat for all i from 0 to len-2:

● Swap min element into position
● arr[minpos] ↔ arr[i]

void SelectionSort(int arr[], int len) {

}

minpos = i;

for (int j = i+1; j < len; j++) {

if (arr[j] < arr[minpos]) {

minpos = j;

}

}

Selection Sort in C

assert(arr[0..i-1] sorted, with i smallest items)

for (int i = 0; i < len-1; i++) {

}

int tmp = arr[i];

arr[i] = arr[minpos];

arr[minpos] = tmp;

● Repeat for all i from 0 to len-2:

● Swap min element into position
● arr[minpos] ↔ arr[i]

void SelectionSort(int arr[], int len) {

}

minpos = i;

for (int j = i+1; j < len; j++) {

if (arr[j] < arr[minpos]) {

minpos = j;

}

}

Selection Sort in C

assert(arr[0..i-1] sorted, with i smallest items)

for (int i = 0; i < len-1; i++) {

}

int tmp = arr[i];

arr[i] = arr[minpos];

arr[minpos] = tmp;

● Repeat for all i from 0 to len-2:

void SelectionSort(int arr[], int len) {

}

minpos = i;

for (int j = i+1; j < len; j++) {

if (arr[j] < arr[minpos]) {

minpos = j;

}

}

Selection Sort in C

assert(arr[0..i-1] sorted, with i smallest items)

for (int i = 0; i < len-1; i++) {

}

int tmp = arr[i];

arr[i] = arr[minpos];

arr[minpos] = tmp;

For now, in pseudocode.

(Needs to be a valid

logical expression)

A Note About Assertions

Two benefits:

1. Can reason about the algorithm

○ Can visualize the progress of an algorithm

■ E.g., first i elements of arr[] always

hold the smallest i elements of arr[]

in sorted order

○ If you can prove the assertion holds

throughout the algorithm, then you prove

the algorithm is correct

■ called a loop invariant

sorted

i

scan for min

sorted

i minpos

to i+1

sorted

i

swap

loop i:

Assertions: part comment / part math

A Note About Assertions

Two benefits (continued)

2. Stronger debugging

○ C’s assert(condition); will check your assertions, and

halt your program if an assertion fails.

○ a failed assertion means your program has a bug.

○ parameter to assert(…) should produce no side-effects!

Q. What would be a good C version of the

assertion used in Selection Sort?

Total Comparisons

Analysis of Selection Sort

How many steps for an input of length N?

● Comparisons:
○ N - 1 to find first min,

○ then N - 2 for the second min,

○ then N - 3,
○ . . .,
○ then 3,
○ then 2,
○ then 1.

Independent of the

nature of the input

(the initial ordering of

the numbers)

● Swaps:
○ N - 1 swaps

● Total running time: O(N2)

