Six Stages of Debugging

A

nat can’t happen.

nat doesn’t happen on my machine.

. Please don't let that happen.
. Why does that happen?

a. The other guy’s code is buggy.
b. The compiler is buggy.

. Oh, | see.

. How did that ever work?

Call Stacks +
On Writing Good Code

CMPT 125
Mo Chen

SFU Computing Science
22/1/2020

Lecture 8

Today:

e Function Call Stack
e Recursion
e Good Coding Principles

Stacks - a Brief Introduction

A stack Is an ordered collection of items, to
which you may insert an item (a push) or
remove an item (a pop), where removal follows
a last-in-first-out order (LIFO).

a stack of plates a stack of books a stack of pancakes

Function Calls

e Function calls & return values in LIFO order.

o When a function completes, control returns to the

function that called it.

e A function call is characterized by 4 things:

O

O

O

O

e All 4 things are maintained on the call stack.

Its parameters

Its local vars
Its return value
Its return address

Remember that:
e parameters have local scope
e variables have local scope
e parameters are pass by value

o Push / pop one stack frame per function call.

Functions Calling Functions

int

int

int

max (int 1, int J) {
if (1 <3) {1=73;}

return 1i;

maxN (int A[], int length) {

int best = A[OQ0];

for (int 1 = 1; 1 < length; i++) {
best = max (best, A[1]);

}

return best;

main () |
int A[10] = {5, 9, 4, 2, 3, 10, 4, 1, 0, 4};
printf ("The highest was %d.\n", maxN (A, 10));

return 0;

max
parameters:

i S
] 9
A

. return 9
5
maxN
parameters:
A P
length 10
local vars:
best 9
i 1
-/
main
local vars:
A[10] = {5, 9, 4,

2, 3, 10, 4, 1,
0, 4};

Recursive Functions

unsigned int fac (unsigned 1

base cases

if (n <= 1) {

return 1;

Factorizy
0O'=1

I'=1

int main () {

printf ("4! = %u\n", fac(4));

return 0;

main(..) IS also a function!

e Running your program Iis the same thing as

making a single function call to main (..)

o main function “called” from command shell
o return value passed to command shell

e main can take arguments
O 1nt main(int argc, char *argv([]) { .. }
o argv[argc] Is an array of strings — the same
sequence of strings you typed on the command line

Stack Variables

e Stack memory is sequential.

e Stack memory Is recycled when function

terminates.
o don’t return pointers to recycled stack variables!
o an important issue in dynamic memory allocation

e Variables on the stack cannot grow / shrink.
o would have to move everything above it on the
stack to make room!

Code serves two purposes

e Code Is the precise expression of an

algorithm to the computer.
o follows instructions literally

e Code is the expression of an algorithm to

another programmer.

o concerned with the problem the algorithm tries to
solve

o “another programmer” might be a future you!

Coding Style - Making It Easy to Read!

e CommentsinC: /* block */ OR // inline

o block comments for: pre- / post-conditions, expected
behaviours, revision documentation

o Inline comments for: assertions, and / or a high-level
description of algorithm, perhaps at a pseudocode level

e Variable naming
o choose names to help with understanding of code
o naming conventions vary between codeshops

e Whitespace

o indentation, blank lines
o expression formatting

Remember This Slide?

int range(int A[], 1nt n) {
int lo = min(A, n);
int hi = max (A, n);

return hi-1o;

int range (int list[], i1int list length) {
int lowest = minN(list, list length);
int highest = maxN(list, list length);

return highest-lowest;

What does this do?

// compute and return n!

int f£(int n) { int factorial (int n) {
int p = 1; int product = 1;
while (n) { while(n > 0) {
P =p * n; product *= n;
n-—-; n-—-;

} }

return p; return product;

