

Algorithm Performance (The Big-O)

CMPT 125 Mo Chen SFU Computing Science 22/1/2020

Lecture 7

Today:

- Barometer instructions
- Manipulating Big-O expressions
- Growth rates of common functions

The Story So Far . . .

- Often consider the *worst-case* behaviour as a benchmark
- Derive total steps (*T*) as a function of input size (*N*)
 - \circ use time command to measure for various N
 - OR . . . count the elementary operations
- Use Big-O to express the growth rate
 - compares algorithms' behaviour as *N* gets large
 - leading constants are removed
 - a hardware-independent analysis

Leading Constants (Review)

Leading constants are affected by:

- CPU speed
- other tasks in the system
- characteristics of memory
- program optimization

Regardless of leading constants, a $O(N \log N)$ algorithm will outperform a $O(N^2)$ algorithm as N gets large

As *N* Gets Large, The Algorithm is Most Important

A carefully crafted algorithm can make the difference between software that is usable and useless

- e.g., if it costs a *O*(*N*) algorithm 0.5s to search 1 billion bank records, but a *O*(log*N*) algorithm 0.005s
- e.g., or, if 10⁹ isn't "big", how about Google?
- e.g., real-time computing where a nearly instant response is required

Optimizing Algorithms

If you find yourself trying all sorts of clever implementation tricks to speed up an algorithm, you should:

- Step back and ask if you're trying to improve a fundamentally inefficient algorithm
- Consider if there might be a better one ... but also realize that there might not be!

It's more important to reduce your running time by a factor of N, than by a factor of 10

• both are important, but not equally important

(Informal) Mathematical Definition

• T(N) = O(f(N)) if and only if there is some positive number *M* and N_0 such that

 $|T(N)| \le Mf(N)$ for all $N \ge N_0$

- O(f(N)) is an estimate of the **upper bound** of running time T(N)
- Equivalently, T(N) = O(f(N)) if $\lim_{N \to \infty} \left| \frac{T(N)}{f(N)} \right| < \infty$

• This limit can usually be computed using l'Hopital's rule

(Informal) Mathematical Definition

- Many possible choices for f(N) -- we want the **best** one
 - $5N^2 = O(N^3)$ is correct, but not the most useful.
 - $5N^2 = O(N^2)$ would be the best estimate of running time
- Many possibilities for T(N) -- we want the worst one
 - When looking for an item in an array, you may find it right away
 - However, in the worst case you have to go through all elements

Big-O and Barometer Instructions

Problem: Given an algorithm, how do you determine its Big-O growth rate?

 Rule of Thumb: the frequency of the algorithm's barometer instructions will be proportional to its Big-O running time

So, find the most frequent operation(s) and count them!

Function calls are not elementary operations

• substitute their Big-O running times

if / else is not an elementary operation

- pick the largest of the two running times
 - \circ remember this is worst case analysis

Loops Multiply

 $f(N) = 3 \times 10 \times 10 \times (N-9) \times (N-9) = O(N^2)$

Rules of the Big-O (Review)

Usually, take the dominant term, remove the leading constant, and put $O(\ldots)$ around it

- Properties:
 - constant factors don't matter
 - low-order terms don't matter

Rules about Polynomials

- 1. The powers of *N* are ordered according to their exponents
 - i.e., $N^a = O(N^b)$ if and only if $a \le b$
 - e.g., $N^2 = O(N^3)$, but N^3 is not $O(N^2)$
- 2. A logarithm grows more slowly than any positive power of *N* greater than 0
 - e.g., $\log_2 N = O(N^{1/2})$

For most functions, can apply L'Hôpital's Rule:

• Theorem: If $\lim_{N\to\infty} \frac{f(N)}{g(N)}$ exists then f(N) = O(g(N))

Example: $\log N$ vs. N^a , a > 0

$$\lim_{N \to \infty} \frac{\log N}{N^a} = \lim_{N \to \infty} \frac{N^{-1}}{a N^{a-1}}$$
$$= \frac{1}{a} \lim_{N \to \infty} N^{-1-(a-1)}$$
$$= \frac{1}{a} \lim_{N \to \infty} N^{-a}$$
$$= \frac{1}{a} \lim_{N \to \infty} \frac{1}{N^a}$$
$$= 0 < \infty$$

More Rules

- 3. Transitivity: if f(N) = O(g(N)) and g(N) = O(h(N))then f(N) = O(h(N))
- 4. Addition: $f(N) + g(N) = O(\max(f(N), g(N)))$
- 5. Multiplication: if $f_1(N) = O(g_1(N))$ and $f_2(N) = O(g_2(N))$ then $f_1(N) * f_2(N) = O(g_1(N) * g_2(N))$

g., $(10 + 5N^2)($	$10\log_2 N + 1) + $	$(5N + \log_2 N)$	$(10N + 2N\log_2)$	
$O(N^2)$	$O(\log N)$	O(N)	$O(N \log N)$	
0($O(N^2 \log N)$		$O(N^2 \log N)$	

 $O(N^2 \log N)$

Typical Growth Rates

- O(1) constant time
 - \circ The time is independent of N, e.g., array look-up
- O(logN) *logarithmic* time
 - $\circ~$ Usually the log is to the base 2, e.g., binary search
- O(N) linear time, e.g., linear search
- O(N logN) e.g., quicksort, mergesort
- $O(N^2) quadratic$ time, e.g., selection sort
- $O(N^k) polynomial$ (where k is a constant)
- $O(2^N)$ *exponential* time, very slow!

Some Plots

Some Plots

