
Algorithm Performance

(The Big-O)
CMPT 125

Mo Chen

SFU Computing Science

22/1/2020

Lecture 7

Today:

● Barometer instructions

● Manipulating Big-O expressions

● Growth rates of common functions

The Story So Far . . .

● Often consider the worst-case behaviour as

a benchmark

● Derive total steps (T) as a function of input

size (N)
○ use time command to measure for various N
○ OR . . . count the elementary operations

● Use Big-O to express the growth rate
○ compares algorithms’ behaviour as N gets large

○ leading constants are removed

○ a hardware-independent analysis

Leading Constants (Review)

Leading constants are affected by:

● CPU speed

● other tasks in the system

● characteristics of memory

● program optimization

Regardless of leading constants, a O(N logN)
algorithm will outperform a O(N2) algorithm as

N gets large

As N Gets Large, The Algorithm is

Most Important

A carefully crafted algorithm can make the

difference between software that is usable and

useless

● e.g., if it costs a O(N) algorithm 0.5s to search 1 billion

bank records, but a O(logN) algorithm 0.005s

● e.g., or, if 109 isn’t “big”, how about Google?

● e.g., real-time computing - where a nearly instant

response is required

Optimizing Algorithms

If you find yourself trying all sorts of clever

implementation tricks to speed up an algorithm,

you should:
● Step back and ask if you’re trying to improve a

fundamentally inefficient algorithm

● Consider if there might be a better one . . . but also realize that

there might not be!

It’s more important to reduce your running time

by a factor of N, than by a factor of 10
● both are important, but not equally important

(Informal) Mathematical Definition

● 𝑇 𝑁 = 𝑂 𝑓 𝑁 if and only if there is some

positive number 𝑀 and 𝑁0 such that

𝑇 𝑁 ≤ 𝑀𝑓 𝑁 for all 𝑁 ≥ 𝑁0
○ 𝑂 𝑓 𝑁 is an estimate of the upper bound of running

time 𝑇 𝑁

● Equivalently, 𝑇 𝑁 = 𝑂 𝑓 𝑁 if

lim
𝑁→∞

𝑇 𝑁

𝑓 𝑁
< ∞

○ This limit can usually be computed using l’Hopital’s rule

(Informal) Mathematical Definition

● Many possible choices for 𝑓 𝑁 -- we want

the best one
○ 5𝑁2 = 𝑂 𝑁3 is correct, but not the most useful.

○ 5𝑁2 = 𝑂 𝑁2 would be the best estimate of running

time

● Many possibilities for 𝑇 𝑁 -- we want the

worst one
○ When looking for an item in an array, you may find it

right away

○ However, in the worst case you have to go through

all elements

Big-O and Barometer Instructions

Problem: Given an algorithm, how do you

determine its Big-O growth rate?

● Rule of Thumb: the frequency of the algorithm’s

barometer instructions will be proportional to its Big-

O running time

So, find the most frequent operation(s) and

count them!

In General: Count

1

N + 1

N

N

i + 1
i

i

Q. What is N?

● The number of

elements in the array

Outside of loop: 2 (steps)

Outer loop: 3N + 1

Grand total = 3/2 N2 + 5/2 N + 3

Inner loop: 3i + 1 for all

possible i from 0 to N - 1.

= 3/2 N2 - 1/2 N

A quadratic function!

1

int dup_chk(int a[], int length) {

int i = length;

while (i > 0) {

i--;

int j = i - 1;

while (j >= 0) {

if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;

}

T(N) = O(N)

Function Calls Substitute

Function calls are not elementary operations

● substitute their Big-O running times

O(N)

O(N)

+ O(N) + O(1)

O(1)

= O(N)

int range(int A[], int n) {

int lo = min(A, n);

int hi = max(A, n);

return hi-lo;

}

Iterate through every element and find minimum

int search(int A[], int n, int key) {

if (!sorted(A, n)) {

return lsearch(A, n, key);

} else {

return bsearch(A, n, key);

}

}

if / else is not an elementary operation

● pick the largest of the two running times
○ remember this is worst case analysis

T(N) = O(N) + max(O(N) , O(logN))

If / Else Max

O(N)

O(N)

O(logN)

= O(N) + O(N)
= O(N)

Iterate through every element to check order

Iterate through every element to look for a key (specific value)

Binary search

Loops Multiply

barometer instructions

x10
x10

x(N-9)

x(N-9)

f(N) = 3 x10 x10 x(N-9) x(N-9) = O(N2)

int max10by10(int a[N][N]) {

int best = 0;

for (int u_row = 0; u_row < N-9; u_row++) {

for (int u_col = 0; u_col < N-9; u_col++) {

int total = 0;

for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {

total += a[row][col];

}

}

best = max(best, total);

}

}

return best;

}

Rules of the Big-O (Review)

Usually, take the dominant term, remove the

leading constant, and put O(. . .) around it

● Properties:

○ constant factors don’t matter

○ low-order terms don’t matter

Rules about Polynomials

For most functions, can apply L’Hôpital’s Rule:

● Theorem: If exists then f(N) = O(g(N))

1. The powers of N are ordered according to

their exponents

● i.e., Na = O(Nb) if and only if a ≤ b

● e.g., N2 = O(N3), but N3 is not O(N2)

2. A logarithm grows more slowly than any

positive power of N greater than 0
● e.g., log2N = O(N1/2)

Example: log𝑁 vs. 𝑁𝑎, 𝑎 > 0

lim
𝑁→∞

log𝑁

𝑁𝑎
= lim

𝑁→∞

𝑁−1

𝑎𝑁𝑎−1

=
1

𝑎
lim
𝑁→∞

𝑁−1− 𝑎−1

=
1

𝑎
lim
𝑁→∞

𝑁−𝑎

=
1

𝑎
lim
𝑁→∞

1

𝑁𝑎

= 0 < ∞

More Rules

3. Transitivity: if f(N) = O(g(N)) and g(N) = O(h(N))
then f(N) = O(h(N))

4. Addition: f(N) + g(N) = O(max(f(N), g(N)))
5. Multiplication: if f1(N) = O(g1(N)) and f2(N) =
O(g2(N)) then f1(N) * f2(N) = O(g1(N) * g2(N))

e.g., (10 + 5N2)(10log2N + 1) + (5N + log2N)(10N + 2N log2N)
𝑂 𝑁2 𝑂 log𝑁 𝑂 𝑁 log𝑁𝑂 𝑁

𝑂 𝑁2 log𝑁 𝑂 𝑁2 log𝑁

𝑂 𝑁2 log𝑁

Typical Growth Rates

● O(1) – constant time
○ The time is independent of N, e.g., array look-up

● O(logN) – logarithmic time
○ Usually the log is to the base 2, e.g., binary search

● O(N) – linear time, e.g., linear search

● O(N logN) – e.g., quicksort, mergesort

● O(N2) – quadratic time, e.g., selection sort

● O(Nk) – polynomial (where k is a constant)

● O(2N) – exponential time, very slow!

Some Plots

Courtesy of fooplot.com

yellow - O(logN)
blue - O(N)
green - O(N logN)
red - O(N2)
black - O(N3)

Some Plots

yellow - O(logN)
blue - O(N)
green - O(N logN)
red - O(N2)
black - O(N3)

Courtesy of fooplot.com

