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Lecture 7/

Today:

e Barometer instructions
e Manipulating Big-O expressions
e Growth rates of common functions



The Story So Far . . .

e Often consider the worst-case behaviour as
a benchmark
e Derive total steps (7) as a function of input

size (N)

o use time command to measure for various N
o OR...countthe elementary operations

e Use BIg-O to express the growth rate

o compares algorithms’ behaviour as N gets large
o leading constants are removed
o a hardware-independent analysis



Leading Constants (Review)

Leading constants are affected by:

e CPU speed

e other tasks in the system
e characteristics of memory
e program optimization

Regardless of leading constants, a O(N logN)
algorithm will outperform a O(N?) algorithm as
N gets large



As N Gets Large, The Algorithm is
Most Important

A carefully crafted algorithm can make the
difference between software that I1s usable and

useless

e e.g., Ifit costs a O(N) algorithm 0.5s to search 1 billion
bank records, but a O(logN) algorithm 0.005s

e e.g.,or, if 10%isn’t “big”, how about Google?

e e.d., real-time computing - where a nearly instant
response is required



Optimizing Algorithms

If you find yourself trying all sorts of clever
Implementation tricks to speed up an algorithm,

you should:

e Step back and ask if you're trying to improve a
fundamentally inefficient algorithm

e Consider if there might be a better one| - - - butalso realize that
there might not be!

It's more important to reduce your running time

by a factor of N, than by a factor of 10
e Dboth are important, but not equally important



(Informal) Mathematical Definition

e T(N) = 0(f(N)) if and only if there is some
positive number M and N, such that

IT(N)| < Mf(N) forall N > N,
o O(f(N)) is an estimate of the upper bound of running

time T(N)

e Equivalently, T(N) = O(f(N)) if
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o This limit can usually be computed using I'Hopital’s rule



(Informal) Mathematical Definition

e Many possible choices for f(N) -- we want

the best one

o 5N? = 0(N?3) is correct, but not the most useful.

o 5N?% = 0(N?4) would be the best estimate of running
time

e Many possibilities for T(N) -- we want the

Worst one

o When looking for an item in an array, you may find it
right away

o However, in the worst case you have to go through
all elements



Big-O and Barometer Instructions

Problem: Given an algorithm, how do you
determine its Big-O growth rate?

e Rule of Thumb: the frequency of the algorithm’s
barometer instructions will be proportional to its Big-
O running time

So, find the most frequent operation(s) and
count them!



int length)

{

Q. Whatis N?

In General: Count/ * Themumberof

int dup chk(int al],

=3/2N*-1/2N

A guadratic function!




Function Calls =) Substitute

Iterate through every element and find minimum
int range (int A[],/i/nt/n) {

int lo = min(A, n)< -
int hi = max(a, n)s3 o)
return hi-lo; -

}
= O(N)

Function calls are not elementary operations
e substitute their Big-O running times




If / Else &==) Max

Iterate through every element to check order
int search(%gz/ﬁf?j int n, int key) {

1f (!sorted (A, n)9—f -
return lsearch (A, n, key)w’—-

} else { Iterate through every element to look for a key (specific value)

return bsearch (A, n, key)?—-
} | /
Binary search

= O(N) + O(N)
= ON)

if [/ else Is not an elementary operation

e pick the largest of the two running times
o remember this is worst case analysis



Loops =) Multiply

int max1l0byl0 (int a[N] [N]) {
int best = 0;

for (int u row = 0; u row < N-9; u row++) {

X(N-9) | for 71nt u col = 0; u col < N-9; u col++) {

X(N-9int total = 0;
(- u row; row < u row+l0; rowt+) {

Tor| (int row =
x10| for (int col = u col; col < u col+l10; col++)

x10| total += al[row] [col];

—_——

best = max(best, total); _ _
barometer instructions

—_——

}

return best;
f(N) = 3x10x10 x(N-9) x(N-9) = O(N?)



Rules of the Big-O (Review)

Usually, take the dominant term, remove the
leading constant, and put O( . . . ) around it

e Properties:

o constant factors don’t matter
o low-order terms don’t matter



Rules about Polynomials

1. The powers of N are ordered according to
their exponents
o ie., Na=ON?) ifand only ifa<b
e e.9., N*=0(N%), but N*is not O(N?)

2. A logarithm grows more slowly than any
positive power of N greater than O
e e.g., log,N=O(N"?)

For most functions, can apply L'Ho6pital's Rule:

e fIN) _
e Theorem: If ]\}1_1;130 o) exists then f(IN) = O(g(N))




Example: log N VS. N%, a > 0
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More Rules

3. Transitivity: if f(IN) = O(g(N)) and g(IN) = O(h(N))
then f(N) = O(h(N))
4. Addition: f(N) + g(N) = O(max(f(N), 8(N)))

5. Multiplication: if f;(N) = O(g,(IN)) and f,(N) =
O(8,(N)) then f(N) * f,(N) = O(g1(N) * 8,(N))

e.g., (10 + 5N%)(10log,N + 1) + (5N + log,N)(10N + 2N log,N)

O(N?) 0(log N) o) 0(N log )

O(N?logN)



Typical Growth Rates

e (O(1) — constant time
o The time is independent of N, e.qg., array look-up

e O(logN) — logarithmic time
o Usually the log is to the base 2, e.g., binary search
O(N) — linear time, e.g., linear search

O(N logN) — e.g., quicksort, mergesort
O(N?) — quadratic time, e.g., selection sort
O(N¥) — polynomial (where k is a constant)
O(2N) — exponential time, very slow!



Some Plots
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Some Plots
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