
● http://www.sfu.ca/computing/current-

students/undergraduate-students/student-

resources/cs_peer_tutoring.html

http://www.sfu.ca/computing/current-students/undergraduate-students/student-resources/cs_peer_tutoring.html

Algorithm Performance

(The Big-O)
CMPT 125

Mo Chen

SFU Computing Science

20/1/2020

Lecture 6

Today:

● Worst-case Behaviour

● Counting Operations

● Performance Considerations

● Time measurements

● Order Notation (the Big-O)

Pessimistic Performance Measure

● Often consider the worst-case behaviour as

a benchmark.
○ make guarantees about code performance under all

circumstances

● Can predict performance by counting the

number of “elementary” steps required by

algorithm in the worst case
○ derive total steps (T) as a function of input size (N)

2D Maximum Density Problem

Problem: Given a 2-dimensional array (NxN) of

integers, find the 10x10 swatch that yields the

largest sum.

Applications:

● Resource management

and optimization

● Finding brightest areas of

photos

Algorithm / Code?

● Try all possible positions for upper

left corner
○ 𝑁 − 9 × (𝑁 − 9) of them

○ (*correction from last class)

○ use a nested loop

● Total each swatch using a 10 × 10

nested loop

● A brute-force approach!
○ Generate a possible solution [naively]

○ Test it [naively]

11

11

int max10by10(int a[N][N]) {

int best = 0;

for (int u_row = 0; u_row <= N-9; u_row++) {

for (int u_col = 0; u_col <= N-9; u_col++) {

int total = 0;

for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {

total += a[row][col];

}

}

best = max(best, total);

}

}

return best;

}

In C
Precise accounting:

348𝑁2 − 6956𝑁 + 34762 operations

Approximate Method:

Count the barometer instructions, the

instructions executed most frequently. Usually,

in the innermost loop.

𝟏𝟎

𝟏𝟏 𝟏𝟎

Innermost loop: 11 + 10 + 10 = 31 ops

Total = 31

× 𝟏𝟎

× 𝟏𝟎

× (𝑵− 𝟗)

× (𝑵− 𝟗)

× (𝑵− 𝟗)

× (𝑵− 𝟗) = 𝟑𝟏𝟎𝑵𝟐

Which Performance Measurement?

● Empirical timings
○ run your code on a real machine with various input sizes

○ plot a graph to determine the relationship

● Operation counting
○ assumes all elementary instructions are created equal

● Actual performance can depend on much more

than just your algorithm!

Running Time is Affected By . . .

● CPU speed

● Amount of main memory

● Specialized hardware (e.g., graphics card)

● Operating system

● System configuration (e.g., virtual memory)

● Programming Language

● Algorithm Implementation

● Other Programs

● . . .

Comparing Algorithm Performance

● There can be many ways to solve a problem,

i.e., different algorithms that produce the

same result
○ E.g., There are numerous sorting algorithms.

● Compare algorithms by their behaviour for

large input sizes, i.e., as N gets large
○ On today’s hardware, most algorithms perform

quickly for small N
● Interested in growth rate as a function of N

○ E.g., Sum an array: linear growth

○ E.g., Check for duplicates: quadratic growth

= O(N)
= O(N2)

Order Notation (the Big-O)

O(N2)● E.g., f(N) = 348N2 - 6956N + 34762

● Suppose we express the number of operations

used in our algorithm as a function of N, the

size of the problem.

● Intuitively, take the dominant term, remove the

leading constant, and put O(. . .) around it.

Formalities of the Big-O

● Given a function T(N), we say T(N) = O(f(N))
if T(N) is at most a constant times f(N),
except perhaps for some small values of N.

● Properties:
○ constant factors don’t matter

○ low-order terms don’t matter

● Rules:
○ For any k and any function f(N), k·f(N) = O(f(N))

■ E.g., 5N = O(N)
■ E.g., logaN = O(logbN). Why?

■ Q. Do leading constants really not matter?

log𝑎𝑁 =
log𝑏 𝑁

log𝑏 𝑎
for any 𝑏

constant

Of course, constant factors affect performance

● E.g., If two different algorithms run in f1(N) = 20N2

and f2(N) = 2N2, respectively, you would expect

Algorithm 2 to run 10 times faster.

● E.g., Similarly, a 10x faster machine running

Algorithm 1 would have the same running time.

● Big-O hides leading constants - a hardware

independent analysis.
Cray Supercomputer

17.6 x 1015 instructions per second

runs unoptimized dup_chk() code from last time

f(N) = 3/2 N2 + 5/2 N + 3

iMac Desktop Personal Computer (2011)

40 x 109 instructions per second

runs an optimized, different dup_chk ()
f(N) = 30N logN + 5N + 4

Leading Constants - Experiment

vs

Experimental Results

Conclusions:

● Cray runs O(N2) algorithm

● iMac runs O(N logN) algorithm which runs faster than

Cray for large N (109 and beyond)

● Thus slow computer + O(N logN) >>

fast computer + O(N2) algorithm

● Rule of Thumb: The slower the function grows,

the faster the algorithm.

N iMac Cray

100,000 1.2 ms 850 ns

85 μs106 15 ms

8.5 ms107 0.2 s

0.85 s108 2 s

1.75 min109 22 s

2:22 hr1010 4.2 min

10 days1011 56 min

2.71012 8:20 hr years

● For the O(N2) Cray, a 10x increase in N leads to

roughly a 100x increase in running time.

● For the O(N logN) iMac, a 10x increase in N leads to

roughly a 10x increase in running time (for the N), plus

a little (for the logN).

Some Plots

Courtesy of fooplot.com

Some Plots

Big-O and Barometer Instructions

Rule of thumb:

The frequency of the barometer instructions will

be proportional to the big-O running time

So, find the most frequent operation(s) and

count them!

Loops Multiply

int max10by10(int a[N][N]) {

int best = 0;

for (int u_row = 0; u_row < N-9; u_row++) {

for (int u_col = 0; u_col < N-9; u_col++) {

int total = 0;

for (int row = u_row; row < u_row+10; row++) {

for (int col = u_col; col < u_col+10; col++) {

total += a[row][col];

}

}

best = max(best, total);

}

}

return best;

}

barometer instructions

𝑇 𝑁 = 3 × 10 × 10 × 𝑁 − 9 × 𝑁 − 9 = 𝑂 𝑁2

× 𝟏𝟎

× (𝑵− 𝟗)

× (𝑵− 𝟗)

× 𝟏𝟎

Analysis of dup_chk()

1

N + 1

N

N

i + 1
i

i

Q. What is N?

● The number of

elements in the array

Outside of loop: 2 (steps)

Outer loop: 3N + 1

Grand total = 3/2 N2 + 5/2 N + 3

Inner loop: 3i + 1 for all

possible i from 0 to N - 1.

= 3/2 N2 - 1/2 N

A quadratic function!

1

int dup_chk(int a[], int length) {

int i = length;

while (i > 0) {

i--;

int j = i - 1;

while (j >= 0) {

if (a[i] == a[j]) {

return 1;

}

j--;

}

}

return 0;

}

Some Math

1 + 4 + 7 +⋯+ 3 𝑁 − 1 + 1 = 1 + 3𝑁 − 3 + 1 ×
𝑁

2

=
1

2
𝑁 3𝑁 − 1

=
3

2
𝑁2 −

1

2
𝑁

Observation 1:

• If 𝑁 is large, then the
1

2
𝑁 term hardly matters

Observation 2: Intuition for arithmetic series, which have 𝑁2 leading terms

• The sum of each pair increase linearly with 𝑁
• The number of pairs increases linearly with 𝑁
• Multiply two quantities that increase linearly with 𝑁 → 𝑁2

Inner loop: 3i + 1 for all

possible i from 0 to N - 1.

= 3/2 N2 - 1/2 N

● Another graph - a quadratic this time!

● Confirms predictions: doubling (2x) the

input size leads to a quadrupling (4x) of

the running time.

Empirical Measurement

N time (in ms)

10000 89

20000 365

40000 1424

100000 9011

N

time

(Informal) Mathematical Definition

● Two functions 𝑇 𝑁 , 𝑓 𝑁 > 0 for all large 𝑁
○ In this course, 𝑇 𝑁 is usually the running time of a program, and

𝑓 𝑁 is some well-known function
○ We want to find 𝑓 𝑁 that approximates how fast 𝑇 𝑁 increases

as 𝑁 becomes very large

● 𝑇 𝑁 = 𝑂 𝑓 𝑁 if and only if there is some positive
number 𝑀 and 𝑁0 such that

𝑇 𝑁 ≤ 𝑀𝑓 𝑁 for all 𝑁 ≥ 𝑁0
○ 𝑂 𝑓 𝑁 is an estimate of the upper bound of running time 𝑇 𝑁

● Many possible choices for 𝑓 𝑁 -- we want the best one
○ 5𝑁2 = 𝑂 𝑁3 is correct, but not the most useful.
○ 5𝑁2 = 𝑂 𝑁2 would be the best estimate of running time

● Many possibilities for 𝑇 𝑁 -- we want the worst one
○ When looking for an item in an array, you may find it right away
○ However, in the worst case you have to go through all elements

Polynomials

Rule:

The powers of N are ordered according to their

exponents, i.e., Na = O(Nb) if and only if a ≤ b

● E.g., N2 = O(N3), but N3 is not O(N2).

Why are lower-ordered terms not included?

● E.g., If your bank account followed f(N) = N2 + N + 1,

you would probably care a lot about the lower-ordered

terms for small N, like N=5, as f(5) = 52 + 5 + 1 = $31.

You’ll care about every dollar. But not for larger N, like

N=1000, as f(1000) = 10002 + 1000 + 1 = $1,001,001.

You care most that you have that million bucks, and not

much about the $1000 or the $1.

More Rules

3. A logarithm grows more slowly than any

other positive power of N.
○ E.g., log2N = O(N1/2).

4. If f(N) = O(g(N)) and g(N) = O(h(N)) then f(N)

= O(h(N)).

5. If both f(N) and g(N) are O(h(N)) then

f(N) + g(N) = O(h(N))

3. If f1(N) = O(g1(N)) and f2(N) = O(g2(N)) then

f1(N) x f2(N) = O(g1(N) x g2(N))
E.g., (10 + 5N2)(10log2N + 1) + (5N + log2N)(10N + 2N log2N)

Typical Growth Rate Functions

● O(1) – constant time
○ The time is independent of N, E.g., list look-up

● O(logN) – logarithmic time
○ Usually the log is to the base 2, E.g., binary search

● O(N) – linear time, E.g., linear search

● O(N logN) – E.g., quicksort, mergesort

● O(N2) – quadratic time, e.g. selection sort

● O(Nk) – polynomial (where k is a constant)

● O(2N) – exponential time, very slow!

