COMPUTING SCIENCE PEER TUTORING

Starting Week 3!
Are You A CMPT 120, 125, 127, 129 Student?
Need Help?
Drop In To Our CS Peer Tutoring Sessions Today!

We Are Located In CSIL ASB 9820

e http://www.sfu.ca/computing/current-
students/undergraduate-students/student-
resources/cs _peer_tutoring.html

http://www.sfu.ca/computing/current-students/undergraduate-students/student-resources/cs_peer_tutoring.html

Algorithm Performance
(The Big-0O)

CMPT 125
Mo Chen

SFU Computing Science
20/1/2020

Lecture 6

Today:

e \Worst-case Behaviour
Counting Operations
Performance Considerations
Time measurements

Order Notation (the Big-O)

Pessimistic Performance Measure

e Often consider the worst-case behaviour as

a benchmark.

o make guarantees about code performance under all
circumstances

e Can predict performance by counting the
number of “elementary” steps required by

algorithm in the worst case
o derive total steps (7) as a function of input size (V)

2D Maximum Density Problem

Problem: Given a 2-dimensional array (INxN) of
Integers, find the 10x10 swatch that yields the

Applications:

e Resource management
and optimization

e Finding brightest areas of
photos

Algorithm / Code?

114

e Try all possible positions for upper

left corner

o (N—9)x (N —09)ofthem H
o (*correction from last class)
o use a nested loop

e Total each swatch using a 10 x 10
nested loop

e A brute-force approach!

o (enerate a possible solution [naively]
o Test it [naively]

In C

Precise accounting:

348N?% — 6956N + 34762 operations

int max10byl0 (int a[N] [N]) {
int best = 0;

X (N —=9)
for

X (N—-9)

x 10

}

return best;

(int u row = 0; u row <= N-9; u row++)

[for (int u col = 0; u col <= N-9; u col++) {

int total = 0O;

[for (int row = u row; row < u row+l0; row++)

ol

10

for (int col = u col; ;
] 11

10
}

}

best = max (best, total);

Which Performance Measurement?

e Empirical timings
o run your code on a real machine with various input sizes
o plot a graph to determine the relationship

e Operation counting
o assumes all elementary instructions are created equal

e Actual performance can depend on much more
than just your algorithm!

Running Time is Affected By . ..

CPU speed

Amount of main memory

Specialized hardware (e.g., graphics card)
Operating system

System configuration (e.g., virtual memory)
Programming Language

Algorithm Implementation

Other Programs

Comparing Algorithm Performance

e There can be many ways to solve a problem,
l.e., different algorithms that produce the

same result
o E.g., There are numerous sorting algorithms.

e Compare algorithms by their behaviour for

large Input sizes, i.e., as N gets large
o On today’s hardware, most algorithms perform
quickly for small N
e Interested in growth rate as a function of N

o E.g., Sum an array: linear growth =ow)
o E.g., Check for duplicates: quadratic growth =O0{?)

Order Notation (the Big-0O)

e Suppose we express the number of operations
used in our algorithm as a function of N, the
size of the problem.

e Intuitively, take the dominant term,_
B .. o O) around it

o E.g., fIN) = 348NB- 6956N + 34762 — -

Formalities of the Big-O

e Given a function T(N), we say T(IN) = O(f(N))
if T(N) is at most a constant times f(IN),
except perhaps for some small values of N.

e Properties:

o constant factors don’t matter
o low-order terms don’t matter

e Rules:
o For any k and any function f(IN), k-f(IN) = O(f(N))
m E.g,5N=0(N) log, N = 222% tor any b
s E.g.log N=0(og,N). Why?~ s

constant

m Q. Do leading constants really not matter?

Leading Constants - Experiment

Of course, constant factors affect performance

e E.g., If two different algorithms run in f;(IN) = 20N?
and f,(N) = 2N?, respectively, you would expect
Algorithm 2 to run 10 times faster.

e E.g., Similarly, a 10x faster machine running
Algorithm 1 would have the same running time.

e Big-O hides leading constants - a hardware

iIndependent analysis.

Cray Supercomputer

17.6 x 10'5 instructions per second
runs unoptimized dup_chk() code from last time
f(N)=3/2N*+5/2N+73

VS

IMac Desktop Personal Computer (2011)

40 x 107 instructions per second
runs an optimized, different dup_chk ()
f(N) =30N logN + 5N + 4

Experimental Results

N

100,000

108

107

108

10°

1.75 min

1010

2:22 hr

1011

10 days

1012

2.7 years

Conclusions:

Cray runs O(N?) algorithm

iMac runs O(N logN) algorithm which runs faster than
Cray for large N (10° and beyond)

Thus slow computer + O(N logN) >>

fast computer + O(/N?) algorithm

Rule of Thumb: The slower the function grows,

the faster the algorithm.

For the O(IN?) Cray, a 10x increase in N leads to
roughly a 100x increase in running time.

For the O(N logN) iMac, a 10x increase in N leads to
roughly a 10x increase in running time (for the N), plus
a little (for the logN).

Some Plots

1

]

— 3040

=250

— 1540

=100

00

100log(x)+60

0.3x+200 (purple)
0.18x*log(x) (green)
0.0001x72+0.2x+50 (red)
0.00000005x%3 (black)

Courtesy of fooplot.com

400 450 500

100log(x)+60
0.3x+200 (purple)
0.18x*log(x) (green)

Some Plots 0.0001xA2+0.2x+50 (red)

0.00000005x*3 (black)

= 3000

—+ 2500

= 200}

—+ 1500

-+ 1001}

M— - -5[;]{! 1500 2000 25301 S000 35300 4000 4500 ol

Big-O and Barometer Instructions

Rule of thumb:

The frequency of the barometer instructions will
be proportional to the big-O running time

So, find the most frequent operation(s) and
count them!

Loops =) Multiply

int max1l0byl0 (int a[N] [N]) {
x (N-logpt best = 0;

for (int u row = 0; u row < N-9; u row++) {

for (int u col = 0; u col < N-9; u col++) {

X (N—-9)
int total = 0O;
for (int row = u row; row < u row+l0; rowt+) ({
x1p B for (int col = u col; col < u col+l10; col++)
x 10 total += alrow] [col];
}
p
Pbest = max(best, total);
barometer instructions

}
return best;
T(N)=3x10x10Xx (N —9) x (N —9) = 0(N?)

Q. Whatis N?

An aIySIS Of dup_Chk(e The number of

elements in the array

int dup chk(int af[], int length) {

=3/2N*-1/2N

A guadratic function!

Inner loop: 31 + 1 for all
possible i from 0 to N - 1.

Some Math 32N 1IN
N
14447+4+3IN-1D+1=>1+ 31v—3+1)><5
1
B VERY
2 2

Observation 1:
« If Nis large, then the %N term hardly matters

Observation 2: Intuition for arithmetic series, which have N? leading terms
« The sum of each pair increase linearly with N

« The number of pairs increases linearly with N

« Multiply two quantities that increase linearly with N > N2

Empirical Measurement

e Another graph - a quadratic this time!
e Confirms predictions: doubling (2x) the

Input size leads to a quadrupling (4x) of
the running time.

N time (in ms)
10000 89 time
20000 365
40000 1424
100000 9011

(Informal) Mathematical Definition

® Two functions T(N), f(N) > 0 for all large N

O In this course, T(N) Is usually the running time of a program, and
f(N) is some well-known function

O We want to find f(N) that approximates how fast T(N) increases
as N becomes very large

® T(N)=0(f(N)) if and only if there is some positive
number M and N, such that

IT(N)| <Mf(N) forall N > N,
O O(f(N)) is an estimate of the upper bound of running time T(N)

® Many Possible choices for f(N) -- we want the best one
O 5N*4 = 0(N?) is correct, but not the most useful.
O 5N? = 0(N?) would be the best estimate of running time

® Many possibilities for T(N) -- we want the worst one
O When looking for an item in an array, you may find it right away
O However, in the worst case you have to go through all elements

Polynomials

Rule:

The powers of N are ordered according to their
exponents, i.e., N2 = O(NP) ifand onlyifa<b

e E.g., N°2=0O(N3), but N3 is not O(N?).

Why are lower-ordered terms not included?

e E.g., If your bank account followed f(N) = N + N + 1,
you would probably care a lot about the lower-ordered
terms for small N, like N=5, as f(5) =52+ 5 + 1 = $31.
You'll care about every dollar. But not for larger N, like
N=1000, as f(1000) = 1000~ + 1000 + 1 = $1,001,001.
You care most that you have that million bucks, and not
much about the $1000 or the $1.

More Rules

3. A logarithm grows more slowly than any

other positive power of N.
o E.g., log,N = O(N¥2).

4. 1f f(N) = O(g(N)) and g(N) = O(h(N)) then f(N)
= O(h(N)).

5. If both f(N) and g(N) are O(h(N)) then
f(N) + g(N) = O(h(N))

3. If f,(N) = O(g,(N)) and f,(N) = O(g,(N)) then
f1(N) x 15(N) = O(g,(N) x g,(N))

E.g., (10 + 5N?)(10log,N + 1) + (5N + log,N)(10N + 2N log,N)

Typical Growth Rate Functions

e O(1) — constant time
o The time is independent of N, E.g., list look-up

e O(logN) — logarithmic time
o Usually the log is to the base 2, E.g., binary search
O(N) — linear time, E.g., linear search

O(N logN) — E.g., quicksort, mergesort
O(N?) — guadratic time, e.g. selection sort
O(NK) — polynomial (where k is a constant)
O(2N) — exponential time, very slow!

