Starting Week 3!
Are You A CMPT 120, 125, 127, 129 Student?
Need Help?
Drop In To Our CS Peer Tutoring Sessions Today!
We Are Located In CSIL ASB 9820

http://www.sfu.ca/computing/current-students/undergraduate-students/student-resources/cs_peer_tutoring.html
Algorithm Performance
(The Big-O)
Lecture 6

Today:

- Worst-case Behaviour
- Counting Operations
- Performance Considerations
- Time measurements
- Order Notation (the Big-O)
Pessimistic Performance Measure

- Often consider the *worst-case* behaviour as a benchmark.
 - make guarantees about code performance under all circumstances

- Can predict performance by counting the number of “elementary” steps required by algorithm in the worst case
 - derive total steps (T) as a function of input size (N)
2D Maximum Density Problem

Problem: Given a 2-dimensional array \((N \times N)\) of integers, find the 10x10 swatch that yields the largest sum.

Applications:
- Resource management and optimization
- Finding brightest areas of photos
Algorithm / Code?

- Try all possible positions for upper left corner
 - \((N - 9) \times (N - 9)\) of them
 - (*correction from last class)
 - use a nested loop
- Total each swatch using a \(10 \times 10\) nested loop
- A *brute-force* approach!
 - Generate a possible solution [naively]
 - Test it [naively]
```c
int max10by10(int a[N][N]) {
    int best = 0;
    for (int u_row = 0; u_row <= N-9; u_row++) {
        for (int u_col = 0; u_col <= N-9; u_col++) {
            int total = 0;
            for (int row = u_row; row < u_row+10; row++) {
                for (int col = u_col; col < u_col+10; col++) {
                    total += a[row][col];
                }
            }
            best = max(best, total);
        }
    }
    return best;
}
```

Precise accounting:

\[348N^2 - 6956N + 34762\] operations

Approximate Method:

Count the barometer instructions, the instructions executed most frequently. Usually, in the innermost loop.

Innermost loop: \(11 + 10 + 10 = 31\) ops

Total: \(31 \times 10 \times (N-9) \times (N-9) = 310N^2\)
Which Performance Measurement?

● Empirical timings
 ○ run your code on a real machine with various input sizes
 ○ plot a graph to determine the relationship

● Operation counting
 ○ assumes all elementary instructions are created equal

● Actual performance can depend on much more than just your algorithm!
Running Time is Affected By . . .

- CPU speed
- Amount of main memory
- Specialized hardware (e.g., graphics card)
- Operating system
- System configuration (e.g., virtual memory)
- Programming Language
- Algorithm Implementation
- Other Programs
- . . .
Comparing Algorithm Performance

- There can be many ways to solve a problem, i.e., different algorithms that produce the same result
 - E.g., There are numerous sorting algorithms.
- Compare algorithms by their behaviour for large input sizes, i.e., as \(N \) gets large
 - On today’s hardware, most algorithms perform quickly for small \(N \)
- Interested in growth rate as a function of \(N \)
 - E.g., Sum an array: linear growth = \(O(N) \)
 - E.g., Check for duplicates: quadratic growth = \(O(N^2) \)
Order Notation (the Big-\(O\))

- Suppose we express the number of operations used in our algorithm as a function of \(N\), the size of the problem.
- Intuitively, take the dominant term, remove the leading constant, and put \(O(\ldots)\) around it.

E.g., \(f(N) = 348N^2 - 6956N + 34762 \rightarrow O(N^2)\)
Formalities of the Big-O

- Given a function $T(N)$, we say $T(N) = O(f(N))$ if $T(N)$ is at most a constant times $f(N)$, except perhaps for some small values of N.

- Properties:
 - constant factors don’t matter
 - low-order terms don’t matter

- Rules:
 - For any k and any function $f(N)$, $k \cdot f(N) = O(f(N))$
 - E.g., $5N = O(N)$
 - E.g., $\log_a N = O(\log_b N)$. Why?
 - Q. Do leading constants really not matter?
Leading Constants - Experiment

Of course, constant factors affect performance

- E.g., If two different algorithms run in $f_1(N) = 20N^2$ and $f_2(N) = 2N^2$, respectively, you would expect Algorithm 2 to run 10 times faster.
- E.g., Similarly, a 10x faster machine running Algorithm 1 would have the same running time.
- Big-O hides leading constants - a *hardware independent analysis.*

<table>
<thead>
<tr>
<th>Cray Supercomputer</th>
<th>iMac Desktop Personal Computer (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.6 x 10^{15} instructions per second</td>
<td>40 x 10^9 instructions per second</td>
</tr>
<tr>
<td>runs unoptimized dup_chk() code from last time</td>
<td>runs an optimized, different dup_chk()</td>
</tr>
<tr>
<td>$f(N) = 3/2 N^2 + 5/2 N + 3$</td>
<td>$f(N) = 30N \log N + 5N + 4$</td>
</tr>
</tbody>
</table>
Experimental Results

<table>
<thead>
<tr>
<th>N</th>
<th>iMac</th>
<th>Cray</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>1.2 ms</td>
<td>850 ns</td>
</tr>
<tr>
<td>10^6</td>
<td>15 ms</td>
<td>85 μs</td>
</tr>
<tr>
<td>10^7</td>
<td>0.2 s</td>
<td>8.5 ms</td>
</tr>
<tr>
<td>10^8</td>
<td>2 s</td>
<td>0.85 s</td>
</tr>
<tr>
<td>10^9</td>
<td>22 s</td>
<td>1.75 min</td>
</tr>
<tr>
<td>10^{10}</td>
<td>4.2 min</td>
<td>2:22 hr</td>
</tr>
<tr>
<td>10^{11}</td>
<td>56 min</td>
<td>10 days</td>
</tr>
<tr>
<td>10^{12}</td>
<td>8:20 hr</td>
<td>2.7 years</td>
</tr>
</tbody>
</table>

Conclusions:

- Cray runs $O(N^2)$ algorithm.
- iMac runs $O(N \log N)$ algorithm which runs faster than Cray for large N (10^9 and beyond).
- Thus slow computer + $O(N \log N)$ >> fast computer + $O(N^2)$ algorithm.
- **Rule of Thumb**: The slower the function grows, the faster the algorithm.

- For the $O(N^2)$ Cray, a 10x increase in N leads to roughly a 100x increase in running time.
- For the $O(N \log N)$ iMac, a 10x increase in N leads to roughly a 10x increase in running time (for the N), plus a little (for the $\log N$).
Some Plots

100\log(x) + 60 \ (yellow)
0.3x + 200 \ (purple)
0.18x\log(x) \ (green)
0.0001x^2 + 0.2x + 50 \ (red)
0.000000005x^3 \ (black)

Courtesy of fooplot.com
Some Plots

100\log(x)+60 \text{ (yellow)}
0.3x+200 \text{ (purple)}
0.18x\log(x) \text{ (green)}
0.0001x^2+0.2x+50 \text{ (red)}
0.00000005x^3 \text{ (black)}
Big-O and Barometer Instructions

Rule of thumb:
The frequency of the barometer instructions will be proportional to the big-O running time

So, find the most frequent operation(s) and count them!
int max10by10(int a[N][N]) {
 int best = 0;
 for (int u_row = 0; u_row < N-9; u_row++) {
 for (int u_col = 0; u_col < N-9; u_col++) {
 int total = 0;
 for (int row = u_row; row < u_row+10; row++) {
 for (int col = u_col; col < u_col+10; col++) {
 total += a[row][col];
 }
 }
 best = max(best, total);
 }
 }
 return best;
}

\[T(N) = 3 \times 10 \times 10 \times (N - 9) \times (N - 9) = O(N^2) \]
Analysis of dup_chk()
Some Math

\[1 + 4 + 7 + \cdots + 3(N - 1) + 1 = (1 + 3N - 3 + 1) \times \frac{N}{2} \]

\[= \frac{1}{2} N(3N - 1) \]

\[= \frac{3}{2} N^2 - \frac{1}{2} N \]

Observation 1:
• If \(N \) is large, then the \(\frac{1}{2} N \) term hardly matters

Observation 2: Intuition for arithmetic series, which have \(N^2 \) leading terms
• The sum of each pair increase linearly with \(N \)
• The number of pairs increases linearly with \(N \)
• Multiply two quantities that increase linearly with \(N \to N^2 \)

Inner loop: \(3i + 1 \) for all possible \(i \) from 0 to \(N - 1 \).
Empirical Measurement

- Another graph - a quadratic this time!
- Confirms predictions: **doubling** (2x) the input size leads to a **quadrupling** (4x) of the running time.

<table>
<thead>
<tr>
<th>N</th>
<th>time (in ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>89</td>
</tr>
<tr>
<td>20000</td>
<td>365</td>
</tr>
<tr>
<td>40000</td>
<td>1424</td>
</tr>
<tr>
<td>100000</td>
<td>9011</td>
</tr>
</tbody>
</table>
(Informal) Mathematical Definition

- Two functions $T(N), f(N) > 0$ for all large N
 - In this course, $T(N)$ is usually the running time of a program, and $f(N)$ is some well-known function
 - We want to find $f(N)$ that approximates how fast $T(N)$ increases as N becomes very large

- $T(N) = O(f(N))$ if and only if there is some positive number M and N_0 such that
 \[|T(N)| \leq Mf(N) \text{ for all } N \geq N_0 \]
 - $O(f(N))$ is an estimate of the upper bound of running time $T(N)$

- Many possible choices for $f(N)$ -- we want the best one
 - $5N^2 = O(N^3)$ is correct, but not the most useful.
 - $5N^2 = O(N^2)$ would be the best estimate of running time

- Many possibilities for $T(N)$ -- we want the worst one
 - When looking for an item in an array, you may find it right away
 - However, in the worst case you have to go through all elements
Polynomials

Rule:
The powers of N are ordered according to their exponents, i.e., $N^a = O(N^b)$ if and only if $a \leq b$

- E.g., $N^2 = O(N^3)$, but N^3 is not $O(N^2)$.

Why are lower-ordered terms not included?

- E.g., If your bank account followed $f(N) = N^2 + N + 1$, you would probably care a lot about the lower-ordered terms for small N, like $N=5$, as $f(5) = 5^2 + 5 + 1 = $31. You’ll care about every dollar. But not for larger N, like $N=1000$, as $f(1000) = 1000^2 + 1000 + 1 = $1,001,001. You care most that you have that million bucks, and not much about the $1000 or the $1.
More Rules

3. A logarithm grows more slowly than any other positive power of N.
 ○ E.g., $\log_2 N = O(N^{1/2})$.
4. If $f(N) = O(g(N))$ and $g(N) = O(h(N))$ then $f(N) = O(h(N))$.
5. If both $f(N)$ and $g(N)$ are $O(h(N))$ then $f(N) + g(N) = O(h(N))$.
3. If $f_1(N) = O(g_1(N))$ and $f_2(N) = O(g_2(N))$ then $f_1(N) \times f_2(N) = O(g_1(N) \times g_2(N))$
 E.g., $(10 + 5N^2)(10\log_2 N + 1) + (5N + \log_2 N)(10N + 2N \log_2 N)$
Typical Growth Rate Functions

- $O(1)$ – **constant** time
 - The time is independent of N, E.g., list look-up
- $O(\log N)$ – **logarithmic** time
 - Usually the log is to the base 2, E.g., binary search
- $O(N)$ – **linear** time, E.g., linear search
- $O(N \log N)$ – E.g., quicksort, mergesort
- $O(N^2)$ – **quadratic** time, e.g. selection sort
- $O(N^k)$ – **polynomial** (where k is a constant)
- $O(2^N)$ – **exponential** time, very slow!