Arrays, Loops & Pointers

CMPT 125
Mo Chen

SFU Computing Science
13/1/2020

Lecture 4

Today

e Arrays and loops
e Performance of loops
e Arrays vs pointers

List vs Array

Python 1ist C array

a seguence of data
access by [index]

iIndex from [0]..[len-1]
dynamic length
can mix types

a seguence of data
access by [index]
Index from [0]..[len-1]
fixed length

all same type

Array Syntax

int main () {
int labscores[.] - {10,10,9,5,10, 0,10,9,8,10};

OR:

int main () {
int labscores [.] ;

labscores[0] = 10; labscores[1l] = 10;
] = 9; labscores[3] = 5;
4] = 10; labscores[5] = 0;
6] = 10; labscores[7] = 9;
81]

= 8; labscores[9]

labscores

[2
labscores|
labscores|

[

labscores

I
|_\
O
~oe

Arrays & lteration
With sequences usually comes iteration.

Python iteration C iteration

for (int 1 = 0; 1 < n; 1++) { }

e for 1 in range(n) : °
® while cond®tion: ¢ while (condifAon) { }
® Dbreak ¢ do { } whidfe (condition):;
® continue ® Dbreak;
°

cont]

e Main differences in syntax are
the for loops
e Both arerecipesfor 0. .n-1

For Loop - Anatomy

int main () {
int labscores[10] = {10,10,9,5,10, 0,10,9,8,10};

int total = 0; initializer:
e run once upon
entry to loop

float average

; IR {

for (int 1 = 0;

total = total + labscoresT®l;
} .
increment:
average = total/10.0; e run at the end
of each loop

printf ("Your total score was: %d\n", total);

printf ("Your average score was: %f\n", average);

Common Errors

for (1 = 0; 1 < 10; 1++); |

printf ("Score %d: %d",‘IT\iaQEESiés[i]);

total += labscores[i]; _
e loop body is a null statement

} e intended loop body never
executed until i == 10

for (i = 0; 1 < 10; i++)

printf ("Score %d: sd", 1, labscores[i]);

Maximum Style Points: Always use braces,
even If loop body is just one statement long.

While Loop

C Is virtually the same as Python

Python: C.
def gcd(a, Db): int gcd(int a, 1int b) {
while b !'= 0: while (b != 0) {
tmp = Db int tmp = b;
b=as%b b=a % b;
a = tmp a = tmp;
return a }

return a;

}

Conditions behave the same in C as in Python
e (O treated as False, non-zero treated as True

Running Time of a Loop

total = 0; Loops are a short
for (int i = 0; 1 < N; i++) { piece of code that

total += numbers[i]; can run for a very
} long time.

printf ("The total is %d\n", total);

e Can measure time as a function of N.
e As N increases, the running time increases.
e EXxpect the relationship to be linear.

Empirical Measurements

Use a “stopwatch” (the t ime command)
e time ./a.out

N time (in ms)
100000000 252
500000000 1224
time
1000000000 2394
2000000000 4770
Intuition: As N doubles, the

program’s time doubles N

Array Bounds

What happens if you access labscores|[-1] or labscores[10]?

int main () {
int labscores([(10] = {10,10,9,5,10, 0,10,9,8,10};
for (int 1 = -1; 1 <= 10; 1++) {

printf ("Your score for lab %d was %d\n", i, labscores[i]);

May cause garbage data or crash program (segmentation fault)
e Python generates a run-time error for labscores[10]

Memory Layout of an Array

int main () {

int labf[10] = {10,10,9,5,10, 0,10,9,8,10};

for (int 1 = i < 10; i++) {

0;
printf ("lab[%d] is at Ox%1x\n", i, &lab[i]);

}

All array entries are in a contiguous space.

lab[7] *(lab + 7)

o] [(2] 381 1[4 [5] [6] \[7] 8] [9]

int lab[10]: 10 | 10 9 5 10 0 10 9 8 10

Addresses (in hex): dl0 dl14 di18 dlc d20 d24 %d2c,{30 d34

base address & (lab[7]) lab + 7

= base + 7*sizeof (int)

Arrays vs Pointers

e The C language treats an array as a pointer

o points to its base address
o allows pointer “arithmetic”

int main () {
int labg[(10] = {10,10,9,5,10, 0,10,9,8,10};
int * first = lab;

int —

i iterates through all
} array elements,
initially pointing to the
head of the array

I++ means to point to the
next element. The pointer
itself is increased by 4,
the sizeof (int).

