
Arrays, Loops & Pointers
CMPT 125

Mo Chen

SFU Computing Science

13/1/2020

Lecture 4

Today

● Arrays and loops

● Performance of loops

● Arrays vs pointers

C array

● a sequence of data
● access by [index]

● index from [0]..[len-1]

● fixed length

● all same type

List vs Array

Python list

● a sequence of data
● access by [index]

● index from [0]..[len-1]

● dynamic length

● can mix types

Array Syntax

length of the array

int main () {

int labscores[10] = {10,10,9,5,10, 0,10,9,8,10};

}

OR:

int main () {

int labscores[10];

labscores[0] = 10; labscores[1] = 10;

labscores[2] = 9; labscores[3] = 5;

labscores[4] = 10; labscores[5] = 0;

labscores[6] = 10; labscores[7] = 9;

labscores[8] = 8; labscores[9] = 10;

}

Arrays & Iteration

Python iteration

● for i in range(n):

● while condition:

● break

● continue

With sequences usually comes iteration.

C iteration

● for (int i = 0; i < n; i++) { }

● while (condition) { }

● do { } while (condition);

● break;

● continue;

● Main differences in syntax are
the for loops

● Both are recipes for 0..n-1

For Loop - Anatomy

int main () {

int labscores[10] = {10,10,9,5,10, 0,10,9,8,10};

int total = 0;

float average = 0.0;

for (int i = 0; i < 10; i++) {

total = total + labscores[i];

}

average = total/10.0;

printf("Your total score was: %d\n", total);

printf("Your average score was: %f\n", average);

}

initializer:

● run once upon

entry to loop

entry condition:

● checked at

beginning of

each loop

increment:

● run at the end

of each loop

for (i = 0; i < 10; i++); {

printf("Score %d: %d", i, labscores[i]);

total += labscores[i];

}

Common Errors

for (i = 0; i < 10; i++)

printf("Score %d: %d", i, labscores[i]);

total += labscores[i];

Maximum Style Points: Always use braces,

even if loop body is just one statement long.

● loop body is a null statement

● intended loop body never
executed until i == 10

● loop body doesn’t include this

statement
● executed once, when i == 10

C is virtually the same as Python

Python:

def gcd(a, b):

while b != 0:

tmp = b

b = a % b

a = tmp

return a

C:

int gcd(int a, int b) {

while (b != 0) {

int tmp = b;

b = a % b;

a = tmp;

}

return a;

}

While Loop

Conditions behave the same in C as in Python

● 0 treated as False, non-zero treated as True

Running Time of a Loop

total = 0;

for (int i = 0; i < N; i++) {

total += numbers[i];

}

printf("The total is %d\n", total);

Loops are a short

piece of code that

can run for a very

long time.

● Can measure time as a function of N.

● As N increases, the running time increases.

● Expect the relationship to be linear.

Empirical Measurements

Use a “stopwatch” (the time command)

● time ./a.out

N time (in ms)

100000000 252

500000000 1224

1000000000 2394

2000000000 4770

Intuition: As N doubles, the

program’s time doubles N

time

Array Bounds

What happens if you access labscores[-1] or labscores[10]?

int main () {

int labscores[10] = {10,10,9,5,10, 0,10,9,8,10};

for (int i = -1; i <= 10; i++) {

printf("Your score for lab %d was %d\n", i, labscores[i]);

}

}

May cause garbage data or crash program (segmentation fault)

● Python generates a run-time error for labscores[10]

int main () {

int lab[10] = {10,10,9,5,10, 0,10,9,8,10};

for (int i = 0; i < 10; i++) {

printf("lab[%d] is at 0x%lx\n", i, &lab[i]);

}

}

All array entries are in a contiguous space.

d10

Memory Layout of an Array

10 10 9 10 0 10 9 8 105

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

int lab[10]:

Addresses (in hex): d14 d18 d1c d20 d28d24 d30d2c d34

base address

lab[7] *(lab + 7)

&(lab[7]) lab + 7

= base + 7*sizeof(int)

● The C language treats an array as a pointer
○ points to its base address

○ allows pointer “arithmetic”

int main () {

int lab[10] = {10,10,9,5,10, 0,10,9,8,10};

int * first = lab;

int * last = lab + 9;

for (int * i = first; i <= last; i++) {

printf("%d is at 0x%lx\n", *i, i);

}

}

Arrays vs Pointers

i iterates through all

array elements,

initially pointing to the

head of the array

last points to lab[9].

Array bounds are checked

every loop.
Alt: *last = &lab[9]

i++ means to point to the

next element. The pointer

itself is increased by 4,
the sizeof(int).

