
Pointer, Functions,

Performance
CMPT 125

Mo Chen

SFU Computing Science

6/1/2020

Lecture 3

Today:

● Data vs Pointers

● Functions in C

● Performance Measurements of Code

Data vs Pointers (Review)

● Besides its data and its type, a variable

needs a memory location to place the data.
○ the variable’s address (a number)

○ each variable has a distinct address, i.e., they may

not overlap

● The C language allows programs to store

and manipulate these addresses
○ called a pointer

Pointer Operations in C

int main () {

int area = 25;

int * pArea = &area;

printf("area = %d\n", area);

printf("pArea = %ld\n", pArea);

printf("pArea = 0x%lx\n", pArea);

}

Output:

area = 25

pArea = 140734562585432

pArea = 0x7fff519c4b58

● a “*” in front of the var name means pointer

● the “&” operator means “address of”
○ saw before when using scanf("%d", &var);

Pointer Operations in C

int main () {

int area = 0;

int * pArea = &area;

*pArea = 25;

printf("area = %d\n", area);

*pArea = *pArea + 50;

printf("area = %d\n", *pArea);

}

Output:

area = 25

area = 75

● the “*” operator means dereference, or

“value of”

○ use / modify the data where the pointer points

Pointer Operations - Recap

● Remember the difference between:
○ the data (variable)

○ the address (pointer)

Working with

Variables

Working with

Pointers

Use “&” (Address Of)

Use “*” (Dereference, value of)

Q. How are these operators related to each other?

Functions

function name parameters

return type

return command

● Define functions outside of main program
○ main() is itself a function!

● Anatomy of a function:

int gcd(int a, int b) {

while (b != 0) {

int tmp = b;

b = a % b;

a = tmp;

}

return a;

}

Pass By Value

● All functions in C pass parameters by value
○ call the subroutine, and it gets its own copy

■ each copy within its own scope

○ avoids side-effects: calling a function should not

(unexpectedly) modify its parameters

● All functions in Python pass parameters by

reference
○ side-effects only if the data is mutable

● Java is a mix

int gcd(int a, int b) {

while (b != 0) {

int tmp = b;

b = a % b;

a = tmp;

}

return a;

}

int main () {

int a = 481, b = 910, result = 0;

result = gcd(a, b);

printf("gcd(%d,%d) = %d\n", a, b, result);

}

Experiment

main

a: 481

b: 910

result: 0

gcd

a: 481

b: 910

tmp:

two different a, b

two different scopes

two different var spaces

13

0

13

13

return 13;

output: gcd(481,910) = 13

Pointers as Parameters

To modify variables outside of scope, pass a

pointer to that variable
void swap(int a, int b) {

int tmp = a;

a = b;

b = tmp;

return;

}

int main () {

int a = 5, b = 12;

swap(a, b);

}

This won’t change the values of a, b

in the main routine. Only locally.

void swap(int *a, int *b) {

int tmp = *a;

*a = *b;

*b = tmp;

return;

}

int main () {

int a = 5, b = 12;

swap(&a, &b);

}

Pass pointers to the integers instead,
and use *a and *b (dereference) to

access their values.

Functions - Summary

● Functions in C have similar syntax and

operation to functions in Python

● Exceptions:
○ must define the types of all parameters

○ must define the type of return value

○ all parameters are pass by value

● Pass a pointer to modify a caller’s variable

Any questions?

How Good is Your Code?

● Several measures of “good”-ness:

● Is it . . .:
○ correct? (bug-free)

○ reliable?

○ efficient?

○ affordable?

○ maintainable?

○ easy to use?

How Good is Your Algorithm?

● Efficiency is the primary focus

● Computers consume 2 major resources:
○ time

○ space (as in memory)

● Lately, time has become the most

precious
○ memory is fairly cheap

○ memory is usually not a constraint

Performance Measurement

Two Options:

1. Time the code when it runs on a variety of

inputs
○ plot graphs + predict behaviour

○ hardware dependent

2. Count the number of operations (steps) your

algorithm performs
○ plot graphs OR derive functions OR . . .

○ . . . use the big-O estimate

○ hardware independent

