
Intractability
CMPT 125

Mo Chen

SFU Computing Science

3/4/2020

Lecture 34

Today:

● Finite Tile Puzzles

● Exponential-Time Algorithms

● NP-Complete Problems

Decision Problem:

● Answers a “Yes” / “No” question.

Some problems don’t have a solution

● called undecidable

unsolvable

problems

(undecidable)

solvable

problems

(decidable)● E.g., Tiling the plane

● E.g., Does program P have an infinite loop?

● E.g., Is program P correct?

Some undecidable problems are “harder” than others

● Can write algorithms that:

○ are successful on restricted classes of inputs

○ work 99% of the time

● E.g., Lab grading server

Decidability (Review)

These problems

might not be that

easy!

Finite Tiling Puzzles

Problem: Given N = M2 tiles, can you

tile an M x M grid?

● harder version: allow to rotate / mirror

A brute force approach:

● Since there are a finitely many ways of

arranging the tiles, and each arrangement

can easily be tested for legality, try and

test all arrangements

● decidable!

What’s the running time?

● N! arrangements means O(N!) time

● By the way, 9! = 362880

no

solution

Human Solution to Finite Tile Puzzle

You would also use brute-force,

but add one tile at a time.

● If tile doesn’t fit, then try another.

● If all tries lead to failure, then

remove the previous tile.

Algorithm is called backtracking.

● recursive

● generates partial solutions

● we didn’t do 8! steps, because we

rejected many permutations early

What makes a “hard” puzzle?
● many partial solutions, but . . .

● few correct solutions (usually one)

Exponential vs Polynomial Time

N! is the fastest growing function yet

● faster than any polynomial

Fastest known algorithm to solve every bug puzzle is 2N,

which also grows very fast

● but remember: many puzzles can be solved quickly in practice!

Rule of Thumb: A typical computer will do 1 billion

operations in around 1 second.

Q. What’s the maximum practical N?

1 second

10 years

N N logN N2 N3 2N N!

109 4.0 x 107 3.1 x 104 103 30 12

3.2 x 1017 6.0 x 1015 5.6 x 108 6.8 x 105 58 19

Reasonable vs Unreasonable Time

The functions 2N and N! easily dwarf the growth

of all functions of the form Nk, for any fixed k.

Two provisos:

● N1000 also grows really stinkingly fast

● There are some linear algorithms with massive

leading constants

But for the most part, the distinction is valid:

● “good” is polynomial

● “bad” is super-polynomial

— tractable

— intractable

unsolvable

problems

(undecidable)

intractable

problems

tractable

problems

The World of All Problems

solvable

problems

(decidable)

unsolvable

problems

(undecidable)

problems admitting a

reasonable (poly-time)

algorithm

problems not

admitting a

reasonable algorithm

Intractability and NPC

Q. Is the finite tile puzzle intractable or tractable?

Mathematically speaking, it is in no man’s land.

● no one has proven that exponential time is required

○ exponential lower bounds have been proved for

some problems (but not this one)

● no polynomial-time algorithm has yet been found

○ backtracking is one algorithm that works well on

most bug puzzles, but not all of them.

The finite tile puzzle belongs to a class called

NPC — the NP-Complete problems.

Other Problems in NPC

There are many natural problems which are

similar to the finite tile puzzle.

They come from a variety of domains.

● The Travelling Salesman Problem (TSP)

Given a road network connecting N cities, plan the

fastest route that passes through all N of them.

● Subset-sum.

Given a list of N numbers and a target number t, find

a subset of those numbers that sums to t.

More Examples

● Knapsacking

Given a list of N items of weight w1, w2, …, wN and

value v1, v2, …, vN, pack a car whose maximum load

is W such that value is maximized

● Scheduling

Given a list of N students each of which has up to 5

final exams, devise the minimum schedule so that

no exams overlap for any students

● Satisfiability

Given a logical expression of length N, find a

true/false substitution that will yield “true”

There are several hundred problems sharing

remarkable properties:

● best known algorithm is exponential

● best lower bound is polynomial

● if one is intractable, then they all are, but . . .

● if one is tractable, then they all are!

P = NP (Cook-Levin 1971)

● The most important open problem in CS

● Also considered a major open problem in Mathematics

● https://youtu.be/YX40hbAHx3s

NPC — Rising and Falling Together

?

https://youtu.be/YX40hbAHx3s

A Use for Intractability

Sometimes the bad news can be used

constructively:

● in cryptography and security

General Strategy: Devise a cryptosystem so

that unauthorized decryption is expensive.

Most public-key crypto relies on large primes

● you can eavesdrop only if you can factor extremely

large numbers efficiently

● integer factorization is believed to be intractable

Coding:

● declare all variables

● pass-by-value

● arrays are fixed length

● strings

● pointers

● coding style

● recursion

● struct

● interfaces

● ADTs

● linked data structures

● struct → class

● templates & the STL

Algorithms:

● measuring performance

● the worst case → big-O

● software engineering principles

● brute-force paradigm

● sorting and searching

● assertions, pre/post-conditions,

invariants, invariant proofs

● divide & conquer paradigm

● recursion & recursive invariants

● ADTs: stacks, queues

● linked lists, rooted trees

● binary search trees

● regular expressions & FSMs

● floating point encoding

● undecidability, intractability

CMPT 125 — Topics Covered

