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Lecture 33

Today:

● The Omnipotence of Computers



The Omnipotence of Computers

Time Magazine - April 16, 1984

“Put the right kind of software into a 

computer, and it will do whatever 

you want it to.  There may be limits 

on what you can do with the 

machines themselves, but there 

are no limits on what you can do 

with software.”

- Editor of a software magazine.

Not so!



Disclaimer

Today’s class does not answer the following:

● Can computers run companies?

● Can computers make good decisions?

● Can computers diagnose?

● Can computers love?

While interesting, these are all:

● non-analytic questions

● pseudo-scientific issues



Algorithmic Problem:

● Set of legal inputs

● Specification of desired output as a function of input

Decision Problem:

● An algorithmic problem where the output is “Yes” or “No”.

Algorithm

A

Decision Problems

like “Accept” / “Reject”

Input

“Yes”

“No”

Algorithm A:

● involves “effectively executable” 

elementary operations, each taking 

bounded time and bounded resources.

● halts for every legal input, and 

answers the question correctly.



The Nature of the Problem

There are problems that have no algorithm

Perhaps the failure is due to insufficient

● money

● time

● brains

But even with unlimited resources, there are 

some problems that defy solution

● such problems are called undecidable

buy a larger, more sophisticated computer

wait longer for output or use a server farm

design a cleverer algorithm



Decidability

problems

you know

how to 

solve

problems

you don’t 

know how 

to solve

Robustness follows from Church-Turing Thesis

● All computers have equivalent algorithmic power.

solvable

problems

(decidable)

unsolvable

problems

(undecidable)



Tiling Problems

Problem:  Tile a portion of the integer grid (perhaps all of it), 

such that adjacent edges have matching colours.

Input:  A finite set of tile types, each of which you may use 

an infinite number of times.

Output:  “Yes”, if possible.  “No”, if impossible.

A Tile

● 1x1

● 4 colours

● Non-rotatable

● Non-reversible



Tiling Puzzle #1

Can tile the entire plane with these! 

1 2 3



Tiling Puzzle #2

Can’t even tile a 3x3 square!

Proof:

● #3 must appear somewhere

1 2 3

● adjacent #3’s need green to the 

right of it (#2’s)

● Contradiction



Tiling The Plane

Problem:  Given a finite set of tiles T, can T be 

used to cover all of the integer plane?

Input:  N,  ,  ,  ,...,   

Tiling the plane is undecidable!

Algorithm

“Yes it can.” “No it can’t.”

No such algorithm 

exists!

● No such machine!

● No such program!



Undecidable Problems

What other problems are undecidable?

The Halting Problem:  Given a program P and 

an input x, ask if P halts on input x.
● E.g.,  P:  while(x != 1) { x = x - 2; }

Naive algorithm to decide halting:

● simulate P on input x
● if P terminates on x then return “Yes”

● else return “No”

Q.  What’s wrong with this approach? 



Rice’s Theorem

Can you write a program to . . .

● find bugs in other programs?

● determine if two programs are equivalent?

● determine whether a program is malicious?

● determine if a program always outputs integers?

● … 

Rice’s Theorem:  You cannot write a program 

that determines any non-trivial property about 

all programs

● can’t cover them all, but sometimes can do “most”

virus-checking is 

undecidable too



● Construct an algorithm S that uses Q.

Q

Proving Undecidability
There is no algorithm that decides the halting 

problem for all possible program-input pairs

Proof:  (Alan Turing - 1936)

● Assume one exists and seek a contradiction!

That is, there is an algorithm Q that correctly 

decides whether or not algorithm P halts on x

“Yes” if

P(x) halts

○ Takes w as input

P x

○ Runs Q(w,w)

“No” if P(x)
doesn’t halt

Q

“Yes” if

w(w) halts

w w

“No” if w(w)
doesn’t halt

S:

w

“Yes”

○ if Q(w,w) returns “No”, then return “Yes”

○ if Q(w,w) returns “Yes”, then infinite loop

● Run S(S).  Does it halt?

○ If no, then S(S) returns “Yes”

○ If yes, then S(S) runs forever


