
A Puzzle For You: What’s the bug?

int main () {

float small1 = 0.001;

float x = 0.0;

while (x <= 1.0+small) {

printf("x = %f\n", x);

x = x + 0.1;

}

printf("the final value of x = %f\n", x);

double small = 0.001;

double y = 0.2;

while (y < 2.0 - small) {

printf("y = %lf\n", y);

y = y + 0.2;

}

printf("the final value of y = %lf\n", y);

}

x = 0.000000
x = 0.100000
x = 0.200000
x = 0.300000
x = 0.400000
x = 0.500000
x = 0.600000
x = 0.700000
x = 0.800000
x = 0.900000
the final value of x = 1.000000
y = 0.200000
y = 0.400000
y = 0.600000
y = 0.800000
y = 1.000000
y = 1.200000
y = 1.400000
y = 1.600000
y = 1.800000
y = 2.000000
the final value of y = 2.200000

OUTPUT

Binary Encodings
CMPT 125

Mo Chen

SFU Computing Science

30/3/2020

Lecture 32

Today:

● Integer Encodings

● Floating Point Representation

● Endian-ness

Positional Value (Review)

The value of binary digits are positional

● just like decimal, except 2-fold instead of 10-fold

739

100

101

102

Decimal:

1001 01112

20

21

22

Binary:

23

27

26

25

24

= 700 + 30 + 9

= 27 + 24 + 22 + 21 + 20

23

26

25

Divisibility By 2

● Construct an FSM that accepts all binary

strings divisible by 2

● Intuition: everything that ends with 0 should

be accepted

● Adding 0
○ Multiply by 2: result is divisible by 2

○ 2n is divisible by 2 for any n

● Adding 1
○ multiply by 2, and add 1: not divisible by 2

○ 2n+1 always has remainder 1 when divided by 2

0

1

1

0

0

1

Fixed Width Encodings

Simple data types are usually fixed in width

● usually multiples of 8 bits

● E.g., char (8 bits), int (often 32 bits), long (often 64 bits)

Puts a limit on the range of possible numbers

● for k bits, gives a max of 2k possibilities

● E.g., int: [-231, 231 -1]
From Stack Overflow:

Step outside the range and you

lose precision

● E.g., x = 2147483647; x++;

results in an overflow

● You can also lose precision due to

round-off errors

Q. What’s the maximum value

for an int32? I can never

remember that number. I need a

memory rule.

A. It's 2,147,483,647. Easiest

way to memorize it is via a tattoo.

(5075 upvotes)

Quick Estimates

● 2^10 = 1024, approximately 1000 (10^3)

● 2^20 is about 1000 * 1000, or 1 million (10^6)

● 2^30 is about 1 billion (10^9)

● 2^31 is about 2 billion (2 * 10^9)

● The last bit is used for the sign
○ So largest positive number is about 2 billion

● Another couple of facts:
○ 32-bit operating systems can access 4GB of RAM

○ 64-bit operating systems can access 4 * 2^32 GB of

RAM

It’s easy if you have an infinite amount of paper!

But what if you have a fixed width of digits?

● you have to truncate and round.

Non-Integer Arithmetic

Two common decimal numbers:

⅔ = 0.66666666666…⅓ = 0.33333333333…= 0.33333333333…= 0.3333333 = 0.66666666666…= 0.6666667

These are the significant digits of the number

● also known as the significand

+1

Scientific Notation (Review)

A convention to express numbers by their

significand and their magnitude (exponent)

● E.g., 6.022 x 1023● atoms/mol● = NA (Avogadro’s Const.)

● E.g., 2.99792458 x 108● m/s● = c (speed of light)

● E.g., 1.073741824 x 109 bytes● = 1 gigabyte

Common usage is to place one significant digit

before the radix (decimal point)

● E.g., ⅓ = ● 3.333333 x 10-1

The same conventions are used for binary.

● 1.b22b21…b1b0● x 2exp

A float is composed of 32 bits:

● 1 bit for the sign● — 0 → positive, 1 → negative

● 23 bits for the significand● — 1.b22b21…b1b0

○ approximately 7 decimal digits of precision

● 8 bits for the exponent

● , where:
○ the largest number

● — ranges from [-126,127]

Range of representations:

● +/-

Floating Point Encoding

○ ≈ 2128 ≈ 3.40 x 1038

○ the smallest number

Sign-magnitude

representation

of negatives

○ ≈ 2-126 ≈ 1.17 x 10-38

● There is a “special” representation for 0

● . . . and a handful of other special cases

● , so ⅝ = 0.101

An exact number! No rounding!

● -0.625 =

● ⅛ = 0.001

Example: -0.625

Decimal fraction: -⅝

● sign bit?

1 0 1

● x 2-1

Format:

1 1 1

● -

1 1

● 1.01000000000000000000000

0 0 1 0

sign exponent significand

+ bias (= 127)

● = 1 (negative)

● significand and exponent?

0.0001100110011001100110011001100110…

● — try long division● significand and exponent?

Decimal fraction: 1/10

● sign bit?

1010) 1.0000000000000000000000000000000000…

● = 0

Example: 0.1

● repeating decimal● — truncate and round

0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1

+1

● exponent● = -4

Special Exponents

● Exponent has 8 bits
○ but ranges from [-126,127]?

○ 8 bits has 2^8 = 256 possible values

○ -126 to 127 has 127 – (-126) + 1 = 254 values

● How to represent 0?
○ 1.(anything) times 2^(anything) is never going to be

zero

● Two exponents reserved for special cases
○ All zero exponent bits → sign*0.(significand)*2^-126

○ All one exponent bits → infinity, NaN

○ NaN: “not a number”, for e.g. when dividing by 0

A Note about Endian-ness

A multiple-byte quantity, like int or float, is

stored across a contiguous sequence of

addresses in memory or in a file.

● two possible memory / file layouts

int var = -100000;

FF

FE

79

60

FF

FE

79

60

FF FE 79 60

var:

var:

increasing

address

increasing

address

“Big-Endian”

“Little-Endian”

