A Puzzle For You: What's the bug?

		x = 0.000000 OUT	PUT
int	main () {	x = 0.100000	
	float small1 = 0.001:	x = 0.200000	
		x = 0.300000	
	$\pm 10at x = 0.0;$	x = 0.400000	
	while (x <= 1.0+small) {	X = 0.500000	
		X = 0.600000	
	$print+(x = \% + (n^{*}, x);$	X = 0.700000	
	x = x + 0.1;	X = 0.800000	
		x = 0.900000	0000
	}	x = 0.200000	0000
	<pre>printf("the final value of x = %f\n", x);</pre>	y = 0.200000	
	double small = 0.001 .	y = 0.400000 y = 0.600000	
		y = 0.800000	
	double $y = 0.2;$	v = 1.000000	
	while (v < 2.0 - small) {	y = 1.200000	
		y = 1.400000	
	print+("y = %l+\n", y);	y = 1.600000	
	y = y + 0.2;	y = 1.800000	
		y = 2.000000	
	}	the final value of $y = 2.20$	0000
	<pre>printf("the final value of y = %lf\n", y);</pre>		

}

Binary Encodings

CMPT 125 Mo Chen SFU Computing Science 30/3/2020

Lecture 32

Today:

- Integer Encodings
- Floating Point Representation
- Endian-ness

Positional Value (Review)

The value of binary digits are positional

• just like decimal, except 2-fold instead of 10-fold

Divisibility By 2

- Construct an FSM that accepts all binary strings divisible by 2
- Intuition: everything that ends with 0 should be accepted

0

- Adding 0
 - Multiply by 2: result is divisible by 2
 - 2n is divisible by 2 for any n
- Adding 1
 - multiply by 2, and add 1: not divisible by 2
 - 2n+1 always has remainder 1 when divided by 2

Fixed Width Encodings

Simple data types are usually fixed in width

- usually multiples of 8 bits
- E.g., char (8 bits), int (often 32 bits), long (often 64 bits)

Puts a limit on the range of possible numbers

- for k bits, gives a max of 2^k possibilities
- E.g., int: [-2³¹, 2³¹-1]

Step outside the range and you lose precision

- E.g., x = 2147483647; x++; results in an *overflow*
- You can also lose precision due to round-off errors

From Stack Overflow:

Q. What's the maximum value for an int32? I can never remember that number. I need a memory rule.

A. It's 2,147,483,647. Easiest way to memorize it is via a tattoo.(5075 upvotes)

Quick Estimates

- 2^10 = 1024, approximately 1000 (10^3)
- 2^20 is about 1000 * 1000, or 1 million (10^6)
- 2^30 is about 1 billion (10^9)
- 2^31 is about 2 billion (2 * 10^9)
- The last bit is used for the sign
 So largest positive number is about 2 billion
- Another couple of facts:
 - 32-bit operating systems can access 4GB of RAM
 - 64-bit operating systems can access 4 * 2^32 GB of RAM

Non-Integer Arithmetic

Two common decimal numbers:

+1

It's easy if you have an infinite amount of paper! But what if you have a fixed width of digits?

• you have to *truncate* and *round*.

These are the significant digits of the number

• also known as the significand

Scientific Notation (Review)

A convention to express numbers by their significand and their magnitude (exponent)

- E.g., 6.022 x 10^{23} atoms/mol = N_A (Avogadro's Const.)
- E.g., 2.99792458 x 10^8 m/s = c (speed of light)
- E.g., 1.073741824 x 10⁹ bytes = 1 gigabyte

Common usage is to place one significant digit before the radix (decimal point)

• E.g.,
$$\frac{1}{3} = 3.3333333 \times 10^{-1}$$

The same conventions are used for binary.

Floating Point Encoding

A float is composed of 32 bits:

- 1 bit for the sign $0 \rightarrow \text{positive}, 1 \rightarrow \text{negative}$
- 23 bits for the significand 1.b₂₂b₂₁...b₁b₀
 approximately 7 decimal digits of precision
- 8 bits for the exponent ranges from [-126,127]

Range of representations:

- +/-1.b₂₂b₂₁...b₁b₀ x 2^{exp}, where:
 - the largest number $\approx 2^{128} \approx 3.40 \times 10^{38}$
 - the smallest number $\approx 2^{-126} \approx 1.17 \times 10^{-38}$
- There is a "special" representation for 0
- ... and a handful of other special cases

Sign-magnitude representation of negatives

Example: -0.625

Decimal fraction: -5/8

- sign bit? = $\frac{1}{1}$ (negative)
- significand and exponent? $\frac{1}{8} = 0.001$, so $\frac{5}{8} = 0.101$

An exact number! No rounding!

Example: 0.1

Decimal fraction: 1/10

Special Exponents

- Exponent has 8 bits
 - but ranges from [-126,127]?
 - \circ 8 bits has 2^8 = 256 possible values
 - -126 to 127 has 127 (-126) + 1 = 254 values
- How to represent 0?
 - 1.(anything) times 2^(anything) is never going to be zero
- Two exponents reserved for special cases
 - All zero exponent bits \rightarrow sign*0.(significand)*2^-126
 - All one exponent bits \rightarrow infinity, NaN
 - NaN: "not a number", for e.g. when dividing by 0

A Note about Endian-ness

A multiple-byte quantity, like int or float, is stored across a contiguous sequence of addresses in memory or in a file.

• two possible memory / file layouts

