
Strategy: Count the number of unmatched (

Let Σ = { '(', ')' } be the alphabet of parentheses.

Construct a FSM that accepts properly balanced parentheses.

E.g., Accept: λ, (), ()(), ((()())())

E.g., Reject:), (, ((), ()), (()()((),)()(

A Puzzle For You

unmatched
1 x (

balanced

(

)

unmatched
2 x (

(

)

unmatched
3 x (

(

)

(

)

. . .

Solution requires an infinite number of states!

The Power of FSMs
CMPT 125

Mo Chen

SFU Computing Science

27/3/2020

Lecture 31

Today:

● POSIX Regular Expressions

● The Power of Regular Languages

● Non-regular Languages

Regular Languages (Review)

A regular language is a language that can be

decided by a FSM.

Closed under:

● union

● catenation

● Kleene star

Can express a regular language using either:

● a FSM … OR …

● a regular expression

POSIX Extended Regular Expressions

Several tools allow you to use regular expressions

● E.g., command line shells, advanced text editors, perl

● Usually search for patterns rather than Accept / Reject

● — union and Kleene star work exactly like you expect

● a+● — it’s like a*, but 1 or more a’s instead of 0 or more a’s

○ E.g., 0+1+

● . . . or maybe just 100+1

○ → a block of 0’s followed by a block of 1’s

● a?● — optional, i.e., 0 or 1 occurrence of a

○ E.g., colou?r○ → color|colour

Problem: Define a pattern that would locate all binary

strings with two 1’s separated by two or more 0’s.

● (0|1)*100+1(0|1)*

Today’s Tool:

egrep

Typical syntax:

● a|b and a*

POSIX Extended Regular Expressions

Typical syntax (cont’d):

● .● — stands for any single character

● [omgwtf]● — a bracket expression - use one of the characters within

○ E.g., defen[cs]e○ → defence|defense

● Hyphens are allowed in bracket expressions to denote a range

○ E.g., 1[1-4]2○ → 112|122|132|142

● ^ at the beginning of a bracket expression means “not”

○ E.g., 1[^1-4]2○ → 102|152|162|172|182|192

● — the beginning and end of a line, respectively

● \< and \>● — the beginning and end of a word, respectively

○ E.g., \<face\>○ → match the word face, but not facet or deface

Problem: Define a pattern that would locate all decimal

numbers with a value of 200 or higher

● \<(1[0-9]|[2-9])[0-9][0-9]+\>

○ → |1a2|1b2|...

● ^ and $

Pattern Exercises

Define a pattern for each of the following:

1. All instances of inline C/C++ comments
● E.g., puts("Hello"); // inline comment

● //.*$

2. C-style hexadecimal numbers
● E.g., 0xffe4

● \<0[xX][0-9a-fA-F]+\>

The Power of FSMs and Regex

We saw, in the opening exercise, that FSMs

can’t decide parenthesis matching

● We have seen a simple algorithm for this earlier in

the course, which uses a stack.

If you augment a FSM with an unbounded

stack, you can decide balanced parentheses.

● Called a pushdown automaton

● Transitions are based on the current state, the next

input character, and the topmost stack symbol.

● Actions include push, pop and next input

Non-regular Languages

FSMs are powerful enough to decide regular

languages.

● When the language is non-regular, you need a

stronger machine.

Pushdown automata are powerful enough to

decide context-free languages

● E.g., Balanced parentheses, valid postfix expressions.

Q. Can you add even more strength to the

machine and get even more languages?

The Ultimate Model of Computation

Augment the FSM with an unbounded data tape

● tape is initialized with the input word

read

head

Input: a bb ba aa

Finite State Machine

The Ultimate Model of Computation

Augment the FSM with an unbounded data tape

● tape is initialized with the input word

read

head

a bb ba aaTape:● allowed actions:

○ may read or write at current position

Finite State Machine

The Ultimate Model of Computation

Augment the FSM with an unbounded data tape

● tape is initialized with the input word
a bb ba aaTape:

read

write

head

● allowed actions:

○ may read or write at current position

Finite State Machine

The Ultimate Model of Computation

Augment the FSM with an unbounded data tape

● tape is initialized with the input word
a bb ba aaTape:

read

write

head

● allowed actions:

○ may read or write at current position

○ may move one step left or right

Finite State Machine

The Ultimate Model of Computation

Augment the FSM with an unbounded data tape

● tape is initialized with the input word
a bb ba aa

Turing Machine

Tape:

read

write

head

Alonzo ChurchAlan Turing

● allowed actions:

○ may read or write at current position

○ may move one step left or right

Augment the FSM with an unbounded data tape

● tape is initialized with the input word
a bb ba aa

Turing Machine

Tape:

read

write

head

Alonzo ChurchAlan Turing

● allowed actions:

○ may read or write at current position

○ may move one step left or right

Church-Turing Thesis

