
Regular Languages
CMPT 125

Mo Chen

SFU Computing Science

25/3/2020

Lecture 30

Today:

● Regular Languages

● Regular Expressions

● FSM Implementations

● Finite State Transducers

A formal language is used to distinguish precisely

what sequences are allowed

● expressed mathematically, often recursively

Three important definitions:

● alphabet (Σ) - a set of characters / symbols

● word (w) - a finite sequence of characters / symbols

● language (L) - a [possibly infinite] set of words

Parse a word w to decide if it is in the language L
● Accept if w is in L, Reject if not in L

Formal Languages (Review)

c

To decide a language, use a finite state machine (FSM).

Rules of the Game:

● Finite number of states: one of them is

the Start state; one or more are the Final

states.

● The FSM reads one character at a time.

● Transitions are based solely on the

current state and the next character.

● A missing transition defaults to the dead

state, which is not a Final state.

● If the FSM ends in a final state, then:

Accept

● Else: Reject

Modelling Computation (Review)

Σ = {a, b, c}

a

b, c

b

b

a

a

a, b, c

c

ends
with a

ends
with ab

contains
abc

L = {all words that have substring abc}

c

To decide a language, use a finite state machine (FSM).

Rules of the Game:

● Finite number of states: one of them is

the Start state; one or more are the Final

states.

● The FSM reads one character at a time.

● Transitions are based solely on the

current state and the next character.

● A missing transition defaults to the dead

state, which is not a Final state.

● If the FSM ends in a final state, then:

Accept

● Else: Reject

Modelling Computation (Review)

Σ = {a, b, c}

a

b, c

b

b

a

a

a, b, c

c

ends
with a

ends
with ab

contains
abc

L = {all words that don’t have substring abc}

Regular Languages

A regular language can be decided by a FSM.

● If you complement a regular language, i.e., swap

Accept ↔ Reject, the result is a regular language.

● Regular languages are closed under complement

Regular languages are also closed under:

● union

● catenation

● Kleene star

Write them using regular expressions.

If L1 and L2 are two regular languages, then

● L1 | L2 is their union, i.e., use a word from L1 or a word from L2

● L1L2 is their catenation, i.e., use a word from L1 followed by one from L2

● L1* is its Kleene closure, i.e., use 0 or more catenations of words from L1

Examples:

● 0 or more b’s:● b*

● begins with a b:

Regular Expressions

Stephen Kleene

(Regular Language Guru)

Kleenex
(Regular Tissue)

1st

2nd

● b(a|b)*

● begins and ends with a b:

3rd

● b(a|b)*b

● begins or ends with a b:● b(a|b)* | (a|b)*b

● begins and ends with different: ● λ | a(a|b)*b | b(a|b)*a

● exactly 3 long: ● (a|b)(a|b)(a|b) OR (a|b)3

● has substring abc:● (a|b|c)*abc(a|b|c)*

● even number of a’s:● b*(ab*ab*)*

Begin w/ 0

FSM Implementation

Follow transitions in a simple loop.

Algorithm:

state ← Start

while there is still input {

c ← next input symbol

if transition(state, c) exists then

state ← transition(state, c)

else

Reject (OR . . . state ← Dead)

}

if state is a Final state then Accept

else Reject

Reasonable Implementations:

1-9

0-9

start

0

0

begins

with
1-9

● Table Method

● Case Method

Σ = {0, 1, 2, …, 9}

Start

Begin w/ 0

Begin w/ 1-9

Begin w/ 1-9

Begin w/ 1-9 Begin w/ 1-9

Dead Dead

0 1-9

While following a transition, perform an action

● place actions on transitions following a slash

● should compute a useful property of the word

1-9

FSM Augmentation: Actions

Σ = {0, 1, 2, …, 9}

0

0-9

start

0

begins
with 1-9

E.g., What might be a useful

property?

● the integer’s value
0 / A1

1-9 / A1

0-9 / A2

● A1:● val = c - '0';

● A2:● val = 10*val + (c-'0');

Another possible action: output

● need to add a special symbol for EOF (usually $)

Problem: Construct a FSM with output that reports the

parity of a sequence of bits

● E.g., 1011 → 1, 11011 → 0, λ → 0

$/0 $/1

FSM Augmentations: Output

0

1

even

number
of 1’s

1 0

EOF

odd

number
of 1’s

Example: Block Reduction

Problem: Construct a FSM with output that

reports the 0/1 blocks of a binary sequence

● E.g., 111000010011100011 → 1010101● E.g., 111000010011100011 → 1010101

1/1

0/0

1/ε

Block
of 0’s

Block
of 1’s

0/ε

0/0 1/1

Strategy:
● Output the first of each block.

EOF

$/ε

$/ε

$/ε

Algorithm:

● Use a large if / else if / . . .

● Use a nested switch / case

switch (state) {

case Start:

switch (c) {

case '0':

state = BeginWith0;

break;

Case Method

case '1':

case '2':

case '3':

case '4':

case '5':

case '6':

case '7':

case '8':

case '9':

state = BeginWith1to9;

} break;

Σ = {0, 1, 2, …, 9}

case BeginWith0:

state = Dead;

break;

case BeginWith1to9:

break;

default:

state = Dead;

}

0

1-9

0-9

start

0

begins
with 1-9

