Regular Languages

CMPT 125 Mo Chen SFU Computing Science 25/3/2020

Lecture 30

Today:

- Regular Languages
- Regular Expressions
- FSM Implementations
- Finite State Transducers

Formal Languages (Review)

A *formal language* is used to distinguish precisely what sequences are allowed

• expressed mathematically, often recursively

Three important definitions:

- *alphabet* (Σ) a set of characters / symbols
- *word* (*w*) a finite sequence of characters / symbols
- *language* (*L*) a [possibly infinite] set of words

Parse a word w to decide if it is in the language L

• Accept if w is in L, Reject if not in L

Modelling Computation (Review)

To decide a language, use a *finite state machine* (FSM). Rules of the Game: $\Sigma = \{a, b, c\}$

- Finite number of states: one of them is the *Start* state; one or more are the *Final* states.
- The FSM reads one character at a time.
- Transitions are based solely on the current state and the next character.
- A missing transition defaults to the dead state, which is not a Final state.
- If the FSM ends in a final state, then: Accept
- Else: Reject

L = {all words that have substring abc}

Modelling Computation (Review)

To decide a language, use a *finite state machine* (FSM). Rules of the Game: $\Sigma = \{a, b, c\}$

- Finite number of states: one of them is the *Start* state; one or more are the *Final* states.
- The FSM reads one character at a time.
- Transitions are based solely on the current state and the next character.
- A missing transition defaults to the dead state, which is not a Final state.
- If the FSM ends in a final state, then: Accept
- Else: Reject

L = {all words that **don't** have substring abc}

Regular Languages

A regular language can be decided by a FSM.

- If you complement a regular language, i.e., swap Accept ↔ Reject, the result is a regular language.
- Regular languages are *closed* under complement

Regular languages are also closed under:

- union
- catenation
- Kleene star

Write them using *regular expressions*.

Regular Expressions

If L_1 and L_2 are two regular languages, then

- ^{3rd} $L_1 \mid L_2$ is their union, i.e., use a word from L_1 or a word from L_2 (Regular Tissue)
- L_1L_2 is their catenation, i.e., use a word from L_1 followed by one from L_2
- L_1^{*} L_1^{*} is its Kleene closure, i.e., use 0 or more catenations of words from L_1

Examples:

- **0 or more** b's: b*
- **begins with a** b: b(a|b)*
- begins and ends with a b: b(a|b)*b
- begins or ends with a b: b(a|b)* | (a|b)*b
- begins and ends with different: $\lambda \mid a(a|b)^*b \mid b(a|b)^*a$
- exactly 3 long: (a|b)(a|b)(a|b) OR $(a|b)^3$
- has substring abc: (a|b|c)*abc(a|b|c)*
- even number of a's: b*(ab*ab*)*

(Regular Language Guru)

FSM Augmentation: Actions

While following a transition, perform an action

- place actions on transitions following a slash
- should compute a useful property of the word

FSM Augmentations: Output

Another possible action: output

• need to add a special symbol for EOF (usually \$)

Problem: Construct a FSM with output that reports the parity of a sequence of bits

• E.g., $1011 \rightarrow 1$, $11011 \rightarrow 0$, $\lambda \rightarrow 0$

Example: Block Reduction

Problem: Construct a FSM with output that reports the 0/1 blocks of a binary sequence

• E.g., $111000010011100011 \rightarrow 1010101$

Case Method

Algorithm:

- Use a large if / else if / . . .
- Use a nested switch / case

```
switch (state) {
case Start:
  switch (c) {
    case '0':
      state = BeginWith0;
      break;
    case '1':
    case '2':
    case '3':
    case '4':
    case '5':
    case '6':
    case '7':
    case '8':
    case '9':
      state = BeginWith1to9;
  } break;
```

