
Introduction to Formal

Languages
CMPT 125

Mo Chen

SFU Computing Science

23/3/2020

Lecture 29

Today:

● Formal Languages

● Finite State Machines

Natural Languages

A natural language is used for the purposes of

human communication

● spoken, written, or gestured

● E.g., English, French, Mandarin

● Time-intensive for us → universally, the (k+1)th most

frequently used word/character occurs half as often

as the kth word/character

Natural Languages

A natural language is used for the purposes of
human communication

● spoken, written, or gestured

● E.g., English, French, Mandarin

● Time-intensive for us → universally, the (k+1)th most
frequently used word/character occurs half as often as
the kth word/character

There are some rules:
● valid characters (alphabet)
● valid words (spelling)
● valid sentences, punctuation (grammar)
● acceptable idioms

Formal Languages

A formal language is used to distinguish

precisely what is allowed from what is not.

● expressed mathematically, often with recursion

● E.g., valid postfix expressions, valid C++

Similar to natural languages, there are:

● alphabets

● words

● grammars

● but no idioms

Alphabets and Words

An alphabet is a finite collection of symbols

● E.g., Σ = {a, b, c, …, z} — letters of the alphabet

● E.g., Σ = {0, 1, 2, …, 9} — base ten digits

● E.g., Σ = {0, 1} — binary digits

A word is a finite sequence of alphabet symbols

● symbols may be repeated, e.g., baa, 100, sheep

● order matters, e.g., stressed vs desserts

● word of length 0 is special, i.e., the empty string (λ, ε)

Distinguish which words are valid vs invalid.

A [formal] language is a set of words.

● can be finite, ● e.g., L = {all valid English words}

● can be infinite,

● Q. What are the words?

● Q. Is L finite or infinite?

● Q. What does it mean to have an infinite length word?

● e.g., L = {all valid integers}

● remember that words are always of finite length

E.g., Let L = {all valid C++ programs}

● Q. What’s the alphabet?

Languages

● ASCII?

● Unicode?

● Tokens?

Specifying Formal Languages

Just like in natural language, use a grammar

● describes the symbols allowed and the order that they should appear

● usually specified recursively

● E.g., A valid sentence is a noun phrase followed by a verb phrase

followed by a subordinate clause.

A subordinate clause may be composed of the symbol “where” followed

by a valid sentence.

● E.g., A valid postfix expression is either: a single number OR

two valid postfix expressions followed by an operator.

Can represent a grammar using production rules:

● E.g., Grammar for postfix: E → number

E → E E operator

Write algorithms to decide inclusion/exclusion in the language

Parse

To decide a language, try a finite state machine (FSM).

Rules of the Game:

a

Modelling Computation

● Finite number of states.

● The FSM reads one character at a time.

● The next state is determined by examining the

current state and the next input character, and

nothing else.

● Each state has at most one transition on any

given character.

● One state is identified as the Start state

● Under no circumstances may a previously read

character be examined again.

● If the last state is a final state: Accept

● If not: Reject

read

head

Input:

a

b

b

● One or more states are designated Final states.

a bb ba aa

Accept

odd

number
of a’s

even

number
of a’s

Σ = {a, b}

Two Puzzles for You

Q. What languages do these FSMs represent?

Σ = {a, b}

a b

a, ba, b

Begins with b

Σ = {0, 1}

empty

begins
with a

begins
with b

dead

state

1

11

1 1

00

0

0

0

empty

start with 0

end with 1

start with 0

end with 0

start with 1

end with 0

start with 1

end with 1

Start and end with different symbols

Using The Dead State

Default transition to the dead state if no transition present.

Q. Build a FSM that accepts all words of length 3. Σ = {a, b}.

Q. Build a FSM that accepts all decimal integers.

Leading zeroes are disallowed. Σ = {0, 1, 2, …, 9}

a, b

a, b

length 0 length 1

length 2length 3length > 3

a, b

a, b

a, b

dead

state

1-9

0-9

0-9

0-9

start

0

0

leading 0

begins
with 1-9

dead

state

