Introduction to Formal
Languages

CMPT 125
Mo Chen

SFU Computing Science
23/3/2020



Lecture 29

Today:

e Formal Languages
e Finite State Machines



Natural Languages

A natural language is used for the purposes of
human communication

e spoken, written, or gestured
e E.g., English, French, Mandarin

e Time-intensive for us = universally, the (k+1)th most
frequently used word/character occurs half as often
as the kth word/character



log(frecuency)

Esperanto
Latin
Ukrainian
Czech
Italian
Spanish
Slovene
Finnish
Hebrew
Turkish
Hungarian
Galician
Danish
Belarusian

Portuguese

German
Malay
English
Slovak
Romanian
Polish
Uzbek
French
Basque
Serbian
Dutch
Catalan

Indonesian
Lithuanian

Croatian

O ] ] ]
0 2 4 6

log(rank)

8

1¢



Natural Languages

A natural language is used for the purposes of
human communication

® spoken, written, or gestured

e E.g., English, French, Mandarin

e Time-intensive for us - universally, the (k+1)th most
frequently used word/character occurs half as often as
the kth word/character

There are some rules:

e valid characters (alphabet)

e valid words (spelling)

e valid sentences, punctuation (grammar)
® acceptable idioms



Formal Languages

A formal language Is used to distinguish
precisely what is allowed from what is not.

e expressed mathematically, often with recursion
e E.g., valid postfix expressions, valid C++

Similar to natural languages, there are:

alphabets
words
grammars
but no idioms



Alphabets and Words

An alphabet is a finite collection of symbols

e Eg.,X={a, b,c, ..., z} — letters of the alphabet
e Eg.,2={0,1, 2, ..., 9} — base ten digits
e E.g., X={0, 1} — binary digits

A word Is a finite sequence of alphabet symbols

e symbols may be repeated, e.g., baa, 100, sheep
e order matters, e.qg., stressed vs desserts
e word of length O is special, i.e., the empty string (A, €)

Distinguish which words are valid vs invalid.



Languages

A [formal] language Is a set of words.

e can be finite, e.qg., L = {all valid English words}
e can be Iinfinite, e.g., L = {all valid integers}
e remember that words are always of finite length

E.g., Let L = {all valid C++ programs}

e Q. What's the alphabet?\ e ASCII?
e Unicode?

e Q. What are the words?
e Q. Is L finite or infinite?
e Q. What does it mean to have an infinite length word?

e Tokens?




Specifying Formal Languages

Just like in natural language, use a grammar

e describes the symbols allowed and the order that they should appear

e usually specified recursively
e E.g., Avalid sentence is a noun phrase followed by a verb phrase

followed by a subordinate clause.

A subordinate clause may be composed of the symbol “where” followed
by a valid sentence.

e E.g., Avalid postfix expression is either: a single number OR

two valid postfix expressions followed by an operator.

Can represent a grammar using production rules:

e E.g., Grammar for postfix: E — number Parse

E — E E operator /

Write algorithms to decide inclusion/exclusion in the language



Modelling Computation

To decide a language, try a finite state machine (FSM).
% ={a, b}

Rules of the Game:

Finite number of states.

The FSM reads one character at a time.

The next state is determined by examining the
current state and the next input character, and
nothing else.

Each state has at most one transition on any
given character.

One state is identified as the Start state

Input:

One or more states are designated Final states.

Under no circumstances may a previously read
character be examined again.

If the last state is a final state: Accept

If not: Reject

Even

of a’s

b
number '



Two Puzzles for You

Q. What languages do these FSMs represent?

Z:{a, b} Z:{O, 1}

1

start with 0
end with 1

start with 1
end with 0

Begins with b Start and end with different symbols 0

start with 1
end with 1

1




Using The Dead State

Default transition to the dead state if no transition present.

Q. Build a FSM that accepts all words of length 3. X ={a, b}.
Q. Build a FSM that accepts all decimal integers.

Leading zeroes are disallowed. X ={0,1, 2, ..., 9}




