
Binary Search Trees
CMPT 125

Mo Chen

SFU Computing Science

18/3/2020

Lecture 27

Today:

● Building a tree using a stack

● Binary Search Trees

Trees and Recursion (Review)

Trees can be defined recursively.

● often, in terms of their subtrees

left subtree right subtree

TL TR

T is a binary tree when either:

Recursive definitions benefit you in

two ways:

● allow you to write recursive algorithms

● allow you to reason about the

structure by recursion (or induction)

Trees with special properties are

usually also recursive

● E.g., full binary trees

● E.g., expression trees

● T is an empty tree (basis)

● T has a root vertex whose left and

right subtrees are binary trees

(recursive definition)

Dynamic Set ADT / Lookup Table

Define a Dynamic Set ADT as:

● a collection of keys

● each key may have some associated data

● insert(key, data) - adds (key, data) into the collection

● search(key) - returns the data associated with key if

present, or NULL otherwise. (Alternate: true / false)

Implementations?

● Coded with an unordered array, search() will be O(N).
● Coded with a sorted array, insert() will be O(N).
● To do better, manage all the keys in a binary tree.

Key Data

Galaxy S10 $1260

Pixel 3 $1000

Mate 20 Pro $1315

iPhone XS $1380

OnePlus 6T $719

To implement insert() or search():

● compare value with root key

● recurse left if value < key

● recurse right if value > key

To manage a collection of keys, use a binary

tree, one key per node in the tree.

For any key x in the tree:

● its left subtree contains keys ≤ x
● its right subtree contains keys ≥ x

Binary Search Tree

x

left

subtree

right

subtree

≤ x
≥ x

bool search(BTnode * root, int target) {

}

How would you search for 25?

A recursive definition for binary search tree (BST):

For root with key = x,
● left subtree is a BST with all keys ≤ x
● right subtree is a BST with all keys ≥ x

● Compare target to root->key
○ return true if found

○ recursively search left if target < root->key

○ recursively search right if target > root->key

● Base Case
○ return false if tree empty

41

58

46

47

72 80

59 77

62

Binary Search Tree: search()

26

16

10

33

35

2323

26

24?

25

28

25 33

28

41

58

46

72 80

25

47

59 77

62

35

NULL

16

10

A recursive definition for binary search tree (BST):

For root with key = x,
● left subtree is a BST with all keys ≤ x
● right subtree is a BST with all keys ≥ x

// Base case

if (root == NULL) return false;

if (root->key == target) return true;

bool search(BTnode * root, int target) {

}

How would you search for 25?

● Compare target to root->key
○ return true if found

○ recursively search left if target < root->key

○ recursively search right if target > root->key

41

58

46

47

72 80

59 77

62

Binary Search Tree: search()

26

16

10

33

35

2323

26

24?

25

28

25 33

28

41

58

46

72 80

25

47

59 77

62

35

NULL

16

10

// Base case

if (root == NULL) return false;

if (root->key == target) return true;

// Search left subtree

if (target < root->key)

return search(root->left, target);

// Search right subtree

else // root->key < target

return search(root->right, target);

bool search(BTnode * root, int target) {

}

How would you search for 25?

A recursive definition for binary search tree (BST):

For root with key = x,
● left subtree is a BST with all keys ≤ x
● right subtree is a BST with all keys ≥ x

41

58

46

47

72 80

59 77

62

Binary Search Tree: search()

26

16

10

33

35

2323

26

24?

25

28

25 33

28

41

58

46

72 80

25

47

59 77

62

35

NULL

16

10

Q. What’s the running time?

Q. Where would you insert 82?

Q. Where would you insert 40?

Binary Search Tree: insert()

78

72 8938

40

37

Q. How about 72, 55, 38, 89, 78, 52?
55 82

68

50

52

// Returns the new root of the binary search tree

BTnode * insert(BTnode * root, int key) {

}

// Base case

if (root == NULL)

return new BTnode(key, NULL, NULL);

// Insert to left subtree

if (key <= root->key)

root->left = insert(root->left, key);

// Insert into right subtree

else // root->key < key

root->right = insert(root->right, key);

return root;

● Compare key to root->key

● Base Case
○ construct and return new node if tree empty

○ recursively insert to the left if key <= root->key

○ recursively insert to the right if key > root->key

● return root

Binary Search Tree: insert()

78

72 8938

40

37

55

Q. What’s the purpose of this?

82

68

50

52

Strategy for insert():

● Similar to search(), recurse down the tree until

you see a NULL, then place the new node there

// Returns the new root of the binary search tree

BTnode * insert(BTnode * root, int key) {

}

// Base case

if (root == NULL)

return new BTnode(key, NULL, NULL);

// Insert to left subtree

if (key <= root->key)

root->left = insert(root->left, key);

// Insert into right subtree

else // root->key < key

root->right = insert(root->right, key);

return root;

● Compare key to root->key
○ recursively insert to the left if key <= root->key

○ recursively insert to the right if key > root->key

● return root

Binary Search Tree: insert()

78

72 8938

40

37

55 82

68

50

52

Strategy for insert():

● Similar to search(), recurse down the tree until

you see a NULL, then place the new node there

// Returns the new root of the binary search tree

BTnode * insert(BTnode * root, int key) {

}

// Base case

if (root == NULL)

return new BTnode(key, NULL, NULL);

// Insert to left subtree

if (key <= root->key)

root->left = insert(root->left, key);

// Insert into right subtree

else // root->key < key

root->right = insert(root->right, key);

return root;

Binary Search Tree: insert()

78

72 8938

40

37

55 82

68

50

52

Strategy for insert():

● Similar to search(), recurse down the tree until

you see a NULL, then place the new node there

Q. What’s the running time?

● h = O(N)
● best case?

Running Time Analysis

What’s the worst case running time of search()?

What about insert()?

● both are based on maximum recursion depth

● depth of a node = distance from the root

● tree height = maximum of all depths

How does height (h) relate to the number of nodes (N)?

● worst case?● a linear, anaemic tree.

1

2

3

N

worst-case

1

2

3 5

6

7

4

best case

● a balanced tree.● h = O(logN)
● average case?● randomly inserted keys. ● average height = O(logN)

Rule of Thumb: Balanced is best for efficiency

● There are algorithms to re-balance search trees, so

that operations are always O(logN).
● E.g., AVL trees, red-black trees, B-Trees

