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Lecture 27

Today:

● Building a tree using a stack

● Binary Search Trees



Trees and Recursion (Review)

Trees can be defined recursively.

● often, in terms of their subtrees

left subtree right subtree

TL TR

T is a binary tree when either:

Recursive definitions benefit you in 

two ways:

● allow you to write recursive algorithms

● allow you to reason about the 

structure by recursion (or induction)

Trees with special properties are 

usually also recursive

● E.g., full binary trees

● E.g., expression trees

● T is an empty tree (basis)

● T has a root vertex whose left and 

right subtrees are binary trees 

(recursive definition)



Dynamic Set ADT / Lookup Table

Define a Dynamic Set ADT as:

● a collection of keys

● each key may have some associated data

● insert(key, data) - adds (key, data) into the collection

● search(key) - returns the data associated with key if 

present, or NULL otherwise.  (Alternate:  true / false)

Implementations?

● Coded with an unordered array, search() will be O(N).  
● Coded with a sorted array, insert() will be O(N).
● To do better, manage all the keys in a binary tree.

Key Data
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To implement insert() or search():

● compare value with root key

● recurse left if value < key

● recurse right if value > key

To manage a collection of keys, use a binary 

tree, one key per node in the tree.

For any key x in the tree:

● its left subtree contains keys ≤ x
● its right subtree contains keys ≥ x

Binary Search Tree
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bool search(BTnode * root, int target) {

}

How would you search for 25?

A recursive definition for binary search tree (BST):

For root with key = x,
● left subtree is a BST with all keys ≤ x
● right subtree is a BST with all keys ≥ x

● Compare target to root->key
○ return true if found

○ recursively search left if target < root->key

○ recursively search right if target > root->key

● Base Case
○ return false if tree empty
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A recursive definition for binary search tree (BST):

For root with key = x,
● left subtree is a BST with all keys ≤ x
● right subtree is a BST with all keys ≥ x

//  Base case

if (root == NULL) return false;

if (root->key == target) return true;

bool search(BTnode * root, int target) {

}

How would you search for 25?

● Compare target to root->key
○ return true if found

○ recursively search left if target < root->key

○ recursively search right if target > root->key

41

58

46

47

72 80

59 77

62

Binary Search Tree:  search()

26

16

10

33

35

2323

26

24?

25

28

25 33

28

41

58

46

72 80

25

47

59 77

62

35

NULL

16

10



//  Base case

if (root == NULL) return false;

if (root->key == target) return true;

//  Search left subtree

if (target < root->key)

return search(root->left, target);

//  Search right subtree

else // root->key < target

return search(root->right, target);

bool search(BTnode * root, int target) {

}

How would you search for 25?

A recursive definition for binary search tree (BST):

For root with key = x,
● left subtree is a BST with all keys ≤ x
● right subtree is a BST with all keys ≥ x
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Q.  What’s the running time?



Q.  Where would you insert 82?

Q.  Where would you insert 40?

Binary Search Tree:  insert()
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//  Returns the new root of the binary search tree

BTnode * insert(BTnode * root, int key) {

}

//  Base case

if (root == NULL) 

return new BTnode(key, NULL, NULL);

//  Insert to left subtree

if (key <= root->key)

root->left = insert(root->left, key);

//  Insert into right subtree

else // root->key < key

root->right = insert(root->right, key);

return root;

● Compare key to root->key

● Base Case
○ construct and return new node if tree empty

○ recursively insert to the left if key <= root->key

○ recursively insert to the right if key > root->key

● return root

Binary Search Tree:  insert()
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Strategy for insert():

● Similar to search(), recurse down the tree until 

you see a NULL, then place the new node there



//  Returns the new root of the binary search tree

BTnode * insert(BTnode * root, int key) {

}

//  Base case

if (root == NULL) 

return new BTnode(key, NULL, NULL);

//  Insert to left subtree

if (key <= root->key)

root->left = insert(root->left, key);

//  Insert into right subtree

else // root->key < key

root->right = insert(root->right, key);

return root;

● Compare key to root->key
○ recursively insert to the left if key <= root->key

○ recursively insert to the right if key > root->key

● return root

Binary Search Tree:  insert()
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Strategy for insert():

● Similar to search(), recurse down the tree until 

you see a NULL, then place the new node there



//  Returns the new root of the binary search tree

BTnode * insert(BTnode * root, int key) {

}

//  Base case

if (root == NULL) 

return new BTnode(key, NULL, NULL);

//  Insert to left subtree

if (key <= root->key)

root->left = insert(root->left, key);

//  Insert into right subtree

else // root->key < key

root->right = insert(root->right, key);

return root;

Binary Search Tree:  insert()
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Strategy for insert():

● Similar to search(), recurse down the tree until 

you see a NULL, then place the new node there

Q.  What’s the running time?



● h = O(N)
● best case?

Running Time Analysis

What’s the worst case running time of search()?

What about insert()?

● both are based on maximum recursion depth

● depth of a node = distance from the root

● tree height = maximum of all depths

How does height (h) relate to the number of nodes (N)?

● worst case?● a linear, anaemic tree.
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best case

● a balanced tree.● h = O(logN)
● average case?● randomly inserted keys. ● average height = O(logN)

Rule of Thumb:  Balanced is best for efficiency

● There are algorithms to re-balance search trees, so 

that operations are always O(logN).
● E.g., AVL trees, red-black trees, B-Trees


