Binary Trees

CMPT 125
Mo Chen

SFU Computing Science
18/3/2020

Lecture 27

Today:

e Binary Trees

e Recursive Definitions of Trees
Binary Tree Implementation
Expression Trees

Traversals

o
o
o
e Grammars

Rooted Trees (Review)

A rooted tree is a tree where all but Il
one vertex has exactly one inbound
edge (from its parent).

usually drawn by level, top down

[

e root vertex has no inbound edge

e |eaf vertex has no outbound edge

e parents point to children / ‘
e ancestors point to descendants via a

downward path ‘/ ‘\" leaves

A binary tree is a rooted tree In
which no vertex has more than 2 @ —parent (O — ancestor
Children — child — descendant

Subtrees and Recursive Definitions

There are many subtrees within a binary tree:

e the two most important are the left and right subtrees
e rooted at the left and right children of the root
e to visualize, remove the root!

Leads to a recursive definition: T

T is a binary tree when:
e Tis an empty tree (i.e., no vertices)
OR...

e T has a root vertex whose left and
right subtrees are binary trees

left subtree right subtree

Subtrees and Recursive Definitions

There are many subtrees within a binary tree:

e the two most important are the left and right subtrees
e rooted at the left and right children of the root
e to visualize, remove the root!

Leads to a recursive definition: T

T is a binary tree when:
e Tis an empty tree (i.e., no vertices)
OR...

e T has a root vertex whose left and
right subtrees are binary trees

left subtree right subtree

Trees and Recursion

Recursive definitions benefit you in
two ways:

e allow you to write recursive algorithms
e allow you to reason about the
structure by recursion (or induction)

How to build a binary tree in C++?

e use the recursive definition
e adopt similar strategy to a linked list

struct LLnode {
int data;
struct LLnode * next;

left subtree right subtree

Trees and Recursion

Recursive definitions benefit you in
two ways:

e allow you to write recursive algorithms
e allow you to reason about the
structure by recursion (or induction)

How to build a binary tree in C++?

e use the recursive definition
e adopt similar strategy to a linked list

struct BTnode {
int data;
struct BTnode * next;

left subtree right subtree

Trees and Recursion

Recursive definitions benefit you in
two ways:

e allow you to write recursive algorithms
e allow you to reason about the
structure by recursion (or induction)

How to build a binary tree in C++?

e use the recursive definition
e adopt similar strategy to a linked list

struct BTnode {
int data;
struct BTnode * left;
struct BTnode * right;

left subtree right subtree

Trees and Recursion

Recursive definitions benefit you in
two ways:

e allow you to write recursive algorithms
e allow you to reason about the
structure by recursion (or induction)

How to build a binary tree in C++?

e use the recursive definition
e adopt similar strategy to a linked list

struct BTnode {
int data;
struct BTnode * left;
struct BTnode * right;
struct BTnode * parent;

left subtree right subtree

Reasoning about Trees

A full binary tree is a non-empty binary tree, where each
vertex has exactly 0 or 2 children.

odd + 1 + odd

Theorem: A full binary tree always
has an odd number of vertices.

Proof by induction:

e If the root has O children, then the tree has
only one vertex, which is odd.

e If the root has 2 children, then their subtrees
must also be full, and by induction, odd.
The total number of vertices is the sum of 3
odd numbers, which is odd.

left subtree (full) right subtree (full)

Expression trees are full.

Expression Trees

An expression tree is a full binary tree that represents an
arithmetic calculation: o

e internal nodes are binary operators
e leaves are numbers

left exp’'n tree + right exp’n tree

Expression Trees and Postfix

An expression tree is a full binary tree that represents an
arithmetic calculation: o

e internal nodes are binary operators
e leaves are numbers

Thus, postfix expressions can be
defined recursively, too.

E is a postfix expression when:

O O\O O
e FEisanumber, OR... ° 0 o e
e Fis two postfix expressions followed by a

binary operator (+, -, *, /) left exp’n tree right exp’'n tree +

Algorithm to evaluate expression tree: yuessmms B

e bottom up 1st operand 2nd operand

Tree Evaluation: Traversals

Algorithm to evaluate a tree rooted at vertex x.-recursion

e |f x has a number, then return that number
e If x has an operator, then:
o evaluate the left subtree
o evaluate the right subtree
o return (left op right)

Known as a post-order traversal

e evaluate the children first, then yourself
e follows the order: left — right — self

Other common traversals:

e self — left — right: pre-order left exp’'n tree right exp’n tree
e left — self — right: in-order

Evaluated: 4 30 7 / * 30 14 3 / - +

Stack-Based Postfix Calculator

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {
if next input token is a number
push the number to S
if next input token is an operator {
pop fromS — b
pop from S — a
push (aopb)to S

}

pop from S — result

Stack-Based Postfix Calculator

Use a Stack ADT to evaluate postfix.
Algorithm:

Create an empty stack S
while there is still input {
If next input token is a number
push the number to S
if next input token is an operator {
pop fromS — b

fan

pop fro

If any pop fails, then it's
invalid postfix.

push (

Building Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

Algorithm: Example:
Create an empty stack S 0O 65 + 6 9 — % —

while there is still input {
if next input token is a number

ush to S
o @ S:
if next input token is an operator {

pop from S — A

pop from S —

push @ toS
}
} a b

pop from S — result

X X

Building Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

Algorithm: Example:
Create an empty stack S O 65 + 6 9 — % —

while there is still input {
if next input token is a number

ush to S
o @ S:
if next input token is an operator {

pop from S — A

pop from S —

push @ toS
}
} a b

pop from S — result

X X

Building Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

Algorithm: Example:
Create an empty stack S 9O 65 + 6 9 — * —

while there is still input {
If next input token is a number

| | push . to S S
if next input token is an operator {

pop from S —

pop from S —

push to S
}
}

e%e®

Building Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

Algorithm: Example:
Create an empty stack S 9O 65 + 6 9 — * —

while there is still input {
If next input token is a number

push . to S S
if next input token is an operator {
pop from S — &
pop from S —>§
push to S
} oo
} o

Building Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

Algorithm: Example:
Create an empty stack S 9O 65 + 6 9 — * —

while there is still input {
If next input token is a number

push . to S S
if next input token is an operator {
pop from S —
pop from S _’é
push to S
}
} o

Building Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

Algorithm: Example:
Create an empty stack S 9O 65 + 6 9 — * —

while there is still input {
If next input token is a number

push . to S S

if next input token is an operator {
pop from S —
pop from S —>§
push toS
}
}

