
Binary Trees
CMPT 125

Mo Chen

SFU Computing Science

18/3/2020

Lecture 27

Today:

● Binary Trees

● Recursive Definitions of Trees

● Binary Tree Implementation

● Expression Trees

● Traversals

● Grammars

A rooted tree is a tree where all but

one vertex has exactly one inbound

edge (from its parent).

● usually drawn by level, top down

● leaf vertex has no outbound edge

Rooted Trees (Review)

● root vertex has no inbound edge

● parents point to children

● ancestors point to descendants via a

downward path

A binary tree is a rooted tree in

which no vertex has more than 2

children.

root

leaves

— parent

— child

— ancestor

— descendant

There are many subtrees within a binary tree:

● the two most important are the left and right subtrees

● rooted at the left and right children of the root

● to visualize, remove the root!

Subtrees and Recursive Definitions

left subtree right subtree

Leads to a recursive definition:

T is a binary tree when:

● T is an empty tree (i.e., no vertices)

OR . . .

● T has a root vertex whose left and

right subtrees are binary trees

T :

There are many subtrees within a binary tree:

● the two most important are the left and right subtrees

● rooted at the left and right children of the root

● to visualize, remove the root!

Subtrees and Recursive Definitions

left subtree right subtree

Leads to a recursive definition:

T is a binary tree when:

● T is an empty tree (i.e., no vertices)

OR . . .

● T has a root vertex whose left and

right subtrees are binary trees

T :

TL TR

Trees and Recursion

Recursive definitions benefit you in

two ways:

● allow you to write recursive algorithms

● allow you to reason about the

structure by recursion (or induction)

How to build a binary tree in C++?

● use the recursive definition

● adopt similar strategy to a linked list

left subtree right subtree

TL TRstruct LLnode {

int data;

struct LLnode * next;

};

T is a binary tree when either:

● T is an empty tree

● T has a root vertex whose left and

right subtrees are binary trees

struct BTnode {

int data;

struct BTnode * next;

};

Trees and Recursion

Recursive definitions benefit you in

two ways:

● allow you to write recursive algorithms

● allow you to reason about the

structure by recursion (or induction)

How to build a binary tree in C++?

● use the recursive definition

● adopt similar strategy to a linked list

left subtree right subtree

TL TR

T is a binary tree when either:

● T is an empty tree

● T has a root vertex whose left and

right subtrees are binary trees

struct BTnode {

int data;

struct BTnode * left;

struct BTnode * right;

};

Trees and Recursion

Recursive definitions benefit you in

two ways:

● allow you to write recursive algorithms

● allow you to reason about the

structure by recursion (or induction)

How to build a binary tree in C++?

● use the recursive definition

● adopt similar strategy to a linked list

left subtree right subtree

TL TR

T is a binary tree when either:

● T is an empty tree

● T has a root vertex whose left and

right subtrees are binary trees

struct BTnode {

int data;

struct BTnode * left;

struct BTnode * right;

struct BTnode * parent;

};

Trees and Recursion

Recursive definitions benefit you in

two ways:

● allow you to write recursive algorithms

● allow you to reason about the

structure by recursion (or induction)

How to build a binary tree in C++?

● use the recursive definition

● adopt similar strategy to a linked list

left subtree right subtree

TL TR

T is a binary tree when either:

● T is an empty tree

● T has a root vertex whose left and

right subtrees are binary trees

Reasoning about Trees

A full binary tree is a non-empty binary tree, where each

vertex has exactly 0 or 2 children.

left subtree (full) right subtree (full)

Theorem: A full binary tree always

has an odd number of vertices.

Proof by induction:

● If the root has 0 children, then the tree has

only one vertex, which is odd.

● If the root has 2 children, then their subtrees

must also be full, and by induction, odd.

Expression trees are full.

odd odd1 ++

The total number of vertices is the sum of 3

odd numbers, which is odd.

Expression Trees

An expression tree is a full binary tree that represents an

arithmetic calculation:

● internal nodes are binary operators

● leaves are numbers

+

4

y 37x

x/

-

/

*

left exp’n tree right exp’n tree+

4 x 7 / * x y 3 / - +

An expression tree is a full binary tree that represents an

arithmetic calculation:

● internal nodes are binary operators

● leaves are numbers

Expression Trees and Postfix

+

4

y 37x

x

Thus, postfix expressions can be

defined recursively, too.

E is a postfix expression when:

● E is a number, OR . . .

● E is two postfix expressions followed by a

binary operator (+, -, *, /)

Algorithm to evaluate expression tree:

● bottom up

/

-

/

*

left exp’n tree right exp’n tree +

1st operand 2nd operand

Tree Evaluation: Traversals

Algorithm to evaluate a tree rooted at vertex x: recursion

● If x has a number, then return that number

● If x has an operator, then:

○ evaluate the left subtree

○ evaluate the right subtree

○ return (left op right)

+

4

37

-

/

*

left exp’n tree right exp’n tree

Known as a post-order traversal
● evaluate the children first, then yourself

● follows the order: left → right → self

+

4

37

/

-

/

/

*

+

4

37

-

//

-

/

*

+Evaluated:

14

4

4

30

16

30

30 7 / * 30 14 3

4

26

42

Other common traversals:
● self → left → right:

● left → self → right:

pre-order

in-order

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix Calculator

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix Calculator

If any pop fails, then it’s

invalid postfix.

If S ends nonempty

then it’s invalid postfix.

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

6

5

Example:
9 6 5 + 6 9 - * -

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

6

5

Example:
9 6 5 + 6 9 - * -

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

6 5

+

-

Example:
9 6 5 + 6 9 - * -

6 9

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

-

Example:
9 6 5 + 6 9 - * -

6 9

6 5

+

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

9

S:

Example:
9 6 5 + 6 9 - * -

6 5

+ -

6 9

*

Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.

to S#

b

a

a b

op

S:

Example:
9 6 5 + 6 9 - * -

6 5

+ -

6 9

*9

-

