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Lecture 27

Today:

● Binary Trees

● Recursive Definitions of Trees

● Binary Tree Implementation

● Expression Trees

● Traversals

● Grammars



A rooted tree is a tree where all but 

one vertex has exactly one inbound 

edge (from its parent).

● usually drawn by level, top down

● leaf vertex has no outbound edge

Rooted Trees (Review)

● root vertex has no inbound edge

● parents point to children

● ancestors point to descendants via a 

downward path

A binary tree is a rooted tree in 

which no vertex has more than 2 

children.

root

leaves

— parent

— child

— ancestor 

— descendant



There are many subtrees within a binary tree:

● the two most important are the left and right subtrees

● rooted at the left and right children of the root

● to visualize, remove the root!

Subtrees and Recursive Definitions

left subtree right subtree

Leads to a recursive definition:

T is a binary tree when:

● T is an empty tree (i.e., no vertices)

OR . . .

● T has a root vertex whose left and 

right subtrees are binary trees

T :
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Trees and Recursion

Recursive definitions benefit you in 

two ways:

● allow you to write recursive algorithms

● allow you to reason about the 

structure by recursion (or induction)

How to build a binary tree in C++?

● use the recursive definition

● adopt similar strategy to a linked list

left subtree right subtree

TL TRstruct LLnode {

int data;

struct LLnode * next;

};

T is a binary tree when either:

● T is an empty tree

● T has a root vertex whose left and 

right subtrees are binary trees



struct BTnode {

int data;

struct BTnode * next;

};
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struct BTnode {

int data;

struct BTnode * left;

struct BTnode * right;

};

Trees and Recursion

Recursive definitions benefit you in 

two ways:

● allow you to write recursive algorithms

● allow you to reason about the 
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struct BTnode {

int data;

struct BTnode * left;

struct BTnode * right;

struct BTnode * parent;

};

Trees and Recursion

Recursive definitions benefit you in 

two ways:

● allow you to write recursive algorithms

● allow you to reason about the 

structure by recursion (or induction)

How to build a binary tree in C++?

● use the recursive definition

● adopt similar strategy to a linked list

left subtree right subtree
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T is a binary tree when either:

● T is an empty tree

● T has a root vertex whose left and 

right subtrees are binary trees



Reasoning about Trees

A full binary tree is a non-empty binary tree, where each 

vertex has exactly 0 or 2 children.

left subtree (full) right subtree (full)

Theorem: A full binary tree always 

has an odd number of vertices.

Proof by induction:

● If the root has 0 children, then the tree has 

only one vertex, which is odd.

● If the root has 2 children, then their subtrees 

must also be full, and by induction, odd. 

Expression trees are full.

odd odd1 ++

The total number of vertices is the sum of 3 

odd numbers, which is odd.



Expression Trees

An expression tree is a full binary tree that represents an 

arithmetic calculation:

● internal nodes are binary operators

● leaves are numbers
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An expression tree is a full binary tree that represents an 

arithmetic calculation:

● internal nodes are binary operators

● leaves are numbers

Expression Trees and Postfix
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Thus, postfix expressions can be 

defined recursively, too.

E is a postfix expression when:

● E is a number, OR . . .

● E is two postfix expressions followed by a 

binary operator (+, -, *, /)

Algorithm to evaluate expression tree:

● bottom up
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Tree Evaluation:  Traversals

Algorithm to evaluate a tree rooted at vertex x:  recursion

● If x has a number, then return that number

● If x has an operator, then:

○ evaluate the left subtree

○ evaluate the right subtree

○ return (left op right)
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Known as a post-order traversal
● evaluate the children first, then yourself

● follows the order:  left → right → self
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Other common traversals:
● self → left → right:

● left → self → right:

pre-order

in-order



Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix Calculator
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Stack-Based Postfix Calculator

If any pop fails, then it’s 

invalid postfix.

If S ends nonempty 

then it’s invalid postfix.



Use a Stack ADT to evaluate postfix.

Algorithm:

Create an empty stack S

while there is still input {

if next input token is a number

push the number to S

if next input token is an operator {

pop from S → b

pop from S → a

push (a op b) to S

}

}

pop from S → result

Stack-Based Postfix CalculatorBuilding Expression Trees from Postfix

Adapt postfix calculator algorithm to build trees from postfix.
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Example:
9 6 5 + 6 9 - * -
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