
More C++
CMPT 125

Mo Chen

SFU Computing Science

11/3/2020

Lecture 24

Today:

● C++’inating Your Code

● new vs malloc()

● delete vs free()

● Code Re-use

● mark members with public: or

private: to control their access

C++ uses the keywords class, public: and

private: to accomplish encapsulation and

information hiding.

● class behaves similar to

struct, i.e., it declares a

composite data type

● holds both data members

(properties) and function

members (methods)

class queue {

private:

LL_t * intlist;

public:

queue();

~queue();

int isEmpty();

void enqueue(int data);

int dequeue();

};

C++ Classes (Review)

(queue.h)

Methods are called by the

object.method() syntax

● methods may access all

members, public or

private, as if they were

local variables

Methods (Review)

Method implementations

are denoted by the

class:: prefix

int queue::isEmpty() {

return (intlist->head == NULL);

}

void queue::enqueue(int data) {

LLappend(intlist, data);

}

(part of the implementation file queue.cpp)

queue Q; // local declaration

Q.enqueue(125);

(one option for driver.cpp)

queue *Q = new queue; // heap decl

Q->enqueue(125);

(the other option for driver.cpp)

queue * Q = new queue;

.

delete Q;

queue::queue() {

intlist = LLcreate();

}

queue::~queue() {

LLdestroy(intlist);

}

Constructors / Destructors (Review)

A destructor cleans up any

resources held by the object.

A constructor is a special

method that initializes its data

members.

● always called when object goes

out of scope or is explicitly

recycled using delete

(queue.cpp)

(driver.cpp)

● always called immediately

upon instantiation

malloc() (Review)

if (num != NULL) *num = 15;

LLnode *n = malloc(sizeof(LLnode));

if (n != NULL) {

n->data = val;

n->next = NULL;

}

You used malloc() for 2 different situations:

int *num = malloc(sizeof(int)); char *cpy = malloc(strlen(src)+1);

Allocate 1 data type.

E.g., int or struct.

Allocate an array of 1 type.

E.g., a string or an image.

if (cpy != NULL) strcpy(cpy, src);

uint8_t *pixels = malloc(row*col);

if (pixels != NULL) {

. . .

. . .

}

In almost all cases, you initialized immediately

after allocating the space.

new vs malloc()

The new operator isn’t just for instantiating

objects: it does all that malloc() does.

● but for objects, it also runs the constructor method

int *num = malloc(sizeof(int));

if (num != NULL) *num = 15;

LLnode *n = malloc(sizeof(LLnode));

if (n != NULL) {

n->data = val;

n->next = NULL;

}

char *cpy = malloc(strlen(src)+1);

int *num = new int;

if (num != NULL) *num = 15;

LLnode *n = new LLnode;

if (n != NULL) {

n->data = val;

n->next = NULL;

}

char *cpy = new char[strlen(src)+1];

new vs malloc()

The new operator isn’t just for instantiating

objects: it does all that malloc() does.

● but for objects, it also runs the constructor method

int *num = malloc(sizeof(int));

if (num != NULL) *num = 15;
int *num = new int(15);

LLnode *n = malloc(sizeof(LLnode));

if (n != NULL) {

n->data = val;

n->next = NULL;

}

char *cpy = malloc(strlen(src)+1);

LLnode *n = new LLnode;

if (n != NULL) {

n->data = val;

n->next = NULL;

}

char *cpy = new char[strlen(src)+1];

new vs malloc()

The new operator isn’t just for instantiating

objects: it does all that malloc() does.

● but for objects, it also runs the constructor method

int *num = malloc(sizeof(int));

if (num != NULL) *num = 15;
int *num = new int(15);

LLnode *n = malloc(sizeof(LLnode));

if (n != NULL) {

n->data = val;

n->next = NULL;

}

char *cpy = malloc(strlen(src)+1);

LLnode *n = new LLnode(val, NULL);

char *cpy = new char[strlen(src)+1];

Function Overloading

Multiple versions of functions may be useful

● Especially for constructors

Example: Constructor for the queue class

● Current version: create an empty queue
public:

queue();

● Sometimes, creating a queue with one

element is convenient
public:

queue(int data);

Function Overloading

Both (and in general, all) versions of functions

can be implemented simultaneously by

overloading the function

● Use the same function name

● Use different input parameters
public:

queue();
queue(int data);

● The version of the function that gets

executed depends on how the function is

called

class queue {

private:

LL_t * intlist;

public:

queue();

queue(int data);

~queue();

int isEmpty();

void enqueue(int data);

int dequeue();

};

Function Overloading

...

queue::queue() {

intlist = Llcreate();

}

queue::queue(int data) {

intlist = Llcreate();

LLappend(intlist, data);

}

...

queue.h queue.cpp

Another Example

Employee class

● Properties: name, ID, job title, salary

● Methods:
○ employee, ~employee, promote, demote, fire, give_raise
○ set_name, set_ID, set_job_title, set_salary
○ get_name, get_ID, get_job_title, get_salary

● Considerations for constructor
○ Create “empty” employee, then use set_ functions to populate

properties:
employee * joe_gupta = new employee();
joe_gupta->set_name("Sumeet Gupta");
joe_gupta->set_salary(314159);

○ Create employee with name and salary
employee * joe_gupta = new employee("Sumeet Gupta", 314159);

Another Example

class employee {
private:

legal_name
id
job_title
salary

public:
employee();
employee(char * legal_name, int salary);
~employee();
promote();
demote();
fire();
give_raise(int new_salary);

set_name(char * legal_name);
set_ID(int id);
set_job_title(char * job_title);
set_salary(int salary);

char * get_name();
int get_ID();
char * get_job_title();
int get_salary();

}

Both return allocated space to the heap, where:

● free() is the inverse of malloc()

● delete is the inverse of new

● delete [] is the inverse of new []

● delete and delete [] run the destructor before

recycling LLnode *n = new LLnode(val, NULL);

. . .

. . .

delete n;

delete vs free()

char *cpy = new char[strlen(src)+1];

. . .

. . .

delete [] cpy;

Code Re-Use

If a piece of code can be employed for multiple

purposes, then you factor the code

● Principle: Write it once, and then re-use it.

These are interfaces, but taken to the next level:

● libraries (E.g., stdio.h, stdlib.h, STL)

● design patterns (E.g., object oriented design)

● frameworks (E.g., Bootstrap, Cocoa, .Net, QX)

Rule of Thumb: Avoid cut & paste

● Updates and debugging won’t affect other versions.

A Queue of Integers

The Story So Far:

● We just developed a Queue ADT which . . .

● depended on a Linked List ADT which . . .

● depended on a Node . . .

but it only works for integers.

What if we wanted a queue of . . .

● doubles?

● strings?

● ordered pairs?

Express the algorithms so that they work on

any type, to be specified as a parameter.

C++ uses the template construct to do this.

template <class T>

class queue {

private:

LL_t * intlist;

public:

queue();

~queue();

int isEmpty();

void enqueue(int data);

int dequeue();

};

Generic Programming

class queue {

private:

LL_t * intlist;

public:

queue();

~queue();

int isEmpty();

void enqueue(int data);

int dequeue();

};

Express the algorithms so that they work on

any type, to be specified as a parameter.

C++ uses the template construct to do this.

template <class T>

class queue {

private:

Linked List of Ts;

public:

queue();

~queue();

int isEmpty();

void enqueue(T data);

T dequeue();

};

Generic Programming

class queue {

private:

LL_t * intlist;

public:

queue();

~queue();

int isEmpty();

void enqueue(int data);

int dequeue();

};

