
Midterm Debrief

● Pick up or view your midterms during office

hours today

● 2:30-4:30pm in my office hours

Midterm Debrief

Midterm Debrief

Studying for the finals: Goals

● Good student goals: at least be able to
○ Redo all exercises in class (e.g. proofs)

○ Reproduce all code in lectures on your own

○ Reproduce all assignment/midterm solutions on your own

● Great student goals: in addition, at least be able to
○ Teach someone else basic level tasks

○ Convert all pseudocode (e.g. in Stack lecture) to code

○ Recall details in material (e.g. quicksort worst-case run time)

● There’s nothing a good final can’t fix

● The above works for most courses!

// Pre: arr[first..mid] and arr[mid+1..last] are sorted

// Post: arr[first..last] are sorted

void merge(int arr[], int first, int mid, int last) {

int len = last-first+1; int newArr[len];

int left = first; int right = mid+1; int newPos = 0;

while(left <= mid && right <= last) {

if (arr[left] < arr[right]) {

newArr[newPos++] = arr[left++];

} else {

newArr[newPos++] = arr[right++];

}

}

// Flush non empty piece

arrCpy(arr + left, newArr + newPos, mid - left + 1);

arrCpy(arr + right, newArr + newPos, last - right + 1);

arrCpy(newArr, arr + first, len);

}

Reproduce merge code

General tips

● Make a cheat sheet, even though you will not be

allowed on one on the final

● Regularly review and study, even if there is no due date
○ Your brain needs time to subconsciously process material

● Ask and answer questions on Piazza

● Reward yourself for studying and learning

● Create practice questions for others or do these

questions on Piazza

Code up pop(S)

Q. From which end should you remove an item?

26 33 NULLhead :

tail :

intlist :

5441

26 33 NULLhead :

tail :

intlist :

5441

From the tail?

From the head?

33

return tail->data;

free tail;

33 NULL

???????????

NULL

O(N) steps to update tail

return head->data;

free(head);

???????????newhead = oldhead->next;

2626

O(1) steps

Queue ADT
CMPT 125

Mo Chen

SFU Computing Science

6/3/2020

Lecture 22

Today:

● Queue ADT

● An algorithm that uses a Queue

● Implementing a Queue (with a Linked List)

● Information Hiding & Encapsulation - Part 1

Queue ADT: A queue is a sequence of data, but the insert

and remove operations work on opposite ends of the

sequence.

● order is first-in-first-out (FIFO)

● like a line-up

Used in simulations and modeling

● to model sequences of work and their

processors, e.g., assembly lines

● Operations Research (OR)

Queue ADT (Review)

Queue of items A processor

enqueue dequeue

x 2 x 2

Problem: Find all locations that are reachable from the start,

and compute their distance.

Algorithm:

Create an empty queue Q; enqueue start → Q

Initialize all distances ← -1 (unreachable), except distance(start) ← 0

while Q not empty {

dequeue from Q → current

if next is neighbour of current and distance(next) == -1 {

distance(next) = distance(current) + 1

enqueue next → Q

}

}

Queue-Based Searching

(Breadth-First Search)

50 51 54 57 65 69

48 52 51 58 64 64

47 53 52 54 60 63

45 48 49 56 64 61

44 45 51 57 58 60

42 46 50 52 58 59

50

Sample Map:

Rules:

• Numbers represent elevation

• You may only traverse to

adjacent grid cells that differ

by no more than 2

Problem: Find all locations that are reachable from the start,

and compute their distance.

Algorithm:

Create an empty queue Q; enqueue start → Q

Initialize all distances ← -1 (unreachable), except distance(start) ← 0

while Q not empty {

dequeue from Q → current

if next is neighbour of current and distance(next) == -1 {

distance(next) = distance(current) + 1

enqueue next → Q

}

}

(3,3)(5,1)(4,1)

6 65

(5,1)(4,1) (3,3)

Queue-Based Searching

(Breadth-First Search)

50 51 54 57 65 69

48 52 51 58 64 64

47 53 52 54 60 63

45 48 49 56 64 61

44 45 51 57 58 60

42 46 50 52 58 59

50 51 65

48 52 51 64 64

47 53 52 54 63

45 56 61

44 45 57 58 60

46 58 59

50 51

48 52 51

47 53 52 54

45

44 45

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1

0 1 14

1 2 3 13 12

2 3 4 5 11

3 6 10

4 5 7 8 9

6 9 10

0 1 14

1 2 3 13 12

2 3 4 5 11

3 6 10

4 5 7 8 9

6 9 10

Sample Map:

Distance:

Q: (0,0)(0,0)

50 51 65

48 52 51 64 64

47 53 52 54 63

45 56 61

44 45 57 58 60

46 58 59

(0,1)(1,0)(0,1)(1,0)(1,1)(2,0)

Dist: 0 1 1 2 2

(1,1)(2,0)(1,2)(2,1)

3 3

(3,0)

3

(1,2)(2,1)(3,0)(2,2)

4

(4,0)

4

(2,2)(4,0)(2,3)

5

(2,3) ...

424242

55
(5,0)

5

(5,0)

Rules:

• Numbers represent elevation

• You may only traverse to

adjacent grid cells that differ

by no more than 2

Queue Implementation

Queue Interface:

● a sequence of data in FIFO order

● create()

● enqueue(x)

● dequeue()

● isEmpty()

Implement using a Linked List

● create() and isEmpty() are trivial

● for enqueue(x) and dequeue(), only issue is to

decide which end of the list

O(1)

O(1)

Queue Implementation: Algorithms

create():

return LLcreate();

isEmpty(Q):

return (Q->head == NULL);

enqueue(Q, x):

LLappend(Q, x);

dequeue(Q):

return LLremoveHead(Q);

insert

remove

head tail

O(1)

O(N)

O(1)

O(N)

typedef LL_t queue_t;

// Creates a pointer to a new empty queue.

// Returns NULL on failure.

queue_t * queue_create(void);

// Recycles a queue

void queue_destroy(queue_t * q);

// Returns 1 iff queue is empty

int queue_isEmpty(queue_t * q);

// Adds element to the back of the queue

void queue_enqueue(queue_t * q, int element);

// Removes element from the front of the queue.

// Undetermined behaviour if queue is empty

int queue_dequeue(queue_t * q);

Information Hiding in C

An invitation for disaster!

Encourages abuse or

misuse by calling the linked

list functions on the type
queue_t *.

Better would be:

typedef struct _queue

queue_t;

which hides all information.

The naming implies that we

would or should call these

operations only on the type
queue_t *.

Marrying Data and Functions

Encapsulation

● bundle related data and operations together

Forge a language construct that marries data

and operations together

● use a struct!

● make the functions part of the data type explicitly

○ called methods

● similar idea to an object in Python

Adds another level of protection against misuse

typedef struct _queue {

LL_t * intlist;

} queue_t;

queue_t * queue_create(void);

void queue_destroy(queue_t * q);

int queue_isEmpty(queue_t * q);

void queue_enqueue(queue_t * q, int element);

int queue_dequeue(queue_t * q);

typedef struct _queue {

LL_t * intlist;

void queue_destroy(queue_t * q);

int queue_isEmpty(queue_t * q);

void queue_enqueue(queue_t * q, int element);

int queue_dequeue(queue_t * q);

} queue_t;

queue_t * queue_create(void);

typedef struct _queue {

LL_t * intlist;

} queue_t;

queue_t * queue_create(void);

void queue_destroy(queue_t * q);

int queue_isEmpty(queue_t * q);

void queue_enqueue(queue_t * q, int element);

int queue_dequeue(queue_t * q);

typedef struct _queue {

LL_t * intlist;

void queue_destroy(struct _queue * q);

int queue_isEmpty(struct _queue * q);

void queue_enqueue(struct _queue * q, int element);

int queue_dequeue(struct _queue * q);

} queue_t;

queue_t * queue_create(void);

typedef struct _queue {

LL_t * intlist;

} queue_t;

queue_t * queue_create(void);

void queue_destroy(queue_t * q);

int queue_isEmpty(queue_t * q);

void queue_enqueue(queue_t * q, int element);

int queue_dequeue(queue_t * q);

typedef struct _queue {

LL_t * intlist;

void (* destroy) (struct _queue * q);

int (* isEmpty) (struct _queue * q);

void (* enqueue) (struct _queue * q, int element);

int (* dequeue) (struct _queue * q);

} queue_t;

queue_t * queue_create(void);

Pointer to a function

rather than the

function itself

Caller’s notation:

Q->enqueue(Q, x);

Provides the syntactic sugar for:

● information hiding

● encapsulation of data and methods

● common code re-use situations

Migrate from struct → class

A Look Ahead to C++

Motivated by these interface issues,

C++ evolved out of C.

● formulated by Bjarne Stroustrop in 1978

Bjarne Stroustrop

