Midterm Debrief

e Pick up or view your midterms during office
hours today

e 2:30-4:30pm in my office hours

Midterm Debrief

Mean Grade 38.40 / 77.00
Median Grade 38.00/77.00
Standard Deviation 15.66

40

30

20

10

0—-10% 20-30% 40-50% 60—70% 80-90%
10-20% 30—40% 50-60% 70-80% 90-100%

~l

Midterm Debrief -

60

50
40
30
20
L __
0
[0, 5] (5, 10] (10, 15] (15, 20] (20, 25] (25, 30]
Reverse Merge Linked List

80 50
70
60
50

40

30
20
: I
0

[0,5] (5,10] (10, 15] (15, 20] (20, 25] [0, 2] (2,4] (4,6] (6, 8] (8, 10] (10, 12]

Studying for the finals: Goals

® student goals: at least be able to
O Redo all exercises in class (e.g. proofs)
O Reproduce all code in lectures on your own
O Reproduce all assignment/midterm solutions on your own

® (Greal student goals: in addition, at least be able to
O Teach someone else basic level tasks
O Convert all pseudocode (e.g. in Stack lecture) to code
O Recall details in material (e.g. quicksort worst-case run time)

e There’s nothing a good final can’t fix

e The above works for most courses!

Reproduce merge code

// Pre: arr[first..mid] and arr[mid+1l..last] are sorted
// Post: arr[first..last] are sorted
void merge(int arr[], int first, int mid, int last) {
int len = last-first+1l; int newArr[len];
int left = first; int right = mid+1; int newPos = 0;
while(left <= mid && right <= last) {
if (arr[left] < arr[right]) {
newArr[newPos++] = arr[left++];
} else {

newArr[newPos++] = arr[right++];

}
// Flush non empty piece
arrCpy(arr + left, newArr + newPos, mid - left + 1);

arrCpy(arr + right, newArr + newPos, last - right + 1);

arrCpy(newArr, arr + first, len);

General tips

® , even though you will not be
allowed on one on the final

® , even if there is no due date
O Your brain needs time to subconsciously process material

® and answer questions on Piazza
® for studying and learning

® Create practice questions for others or
on Piazza

Code up pop (S)

Q. From which end should you remove an item?

From the tail?

intlist:

head: ®

A 4

26

sl 54

Y

tail:

—

return tail->data;

From the head?

return head->data;

intlist:

head:

tail:

free (heM

free tail;

newklfead = oldhead->next;

O(1) steps

O(N) steps to update tail

/

41

»| 54

'jt 33 | &—— NULL

Queue ADT

CMPT 125
Mo Chen
SFU Computing Science
6/3/2020

Lecture 22

Today:
e Queue ADT
e An algorithm that uses a Queue

e Implementing a Queue (with a Linked List)
e |Information Hiding & Encapsulation - Part 1

Queue ADT (Review)

Queue ADT: A queue is a sequence of data, but the insert
and remove operations work on opposite ends of the
seqguence.
e order is first-in-first-out (FIFO)
e like aline-up

Used in simulations and modeling

e to model sequences of work and their
processors, e.g., assembly Iines

(9> e Operations Research (OR) &=
*u' dequeue *

Queue of items A processor

Queue-Based Searching e

Numbers represent elevation

(Breadth-First Search) ° gacengidcols hatiter

by no more than 2

Problem: Find all locations that are reachable from the start,

and compute their distance. 50| 51| 54|57 6| es
Sample Map: || sz |s|ss|os o

47 | 53 | 52 | 54 | 60 | 63

Algorithm;

Create an empty queue Q; enqueue start — Q

Initialize all distances < -1 (unreachable), except distance(start) < 0 R R Rl e

while Q not empty { 44 | 45 | 51 | 57 | 58 | 60

42 | 46 | 50 | 52 | 58 | 59
dequeue from Q — current

if next is neighbour of current and distance(next) == -1 {
distance(next) = distance(current) + 1

enqueue next — Q

Queue-Based Searching e

Numbers represent elevation

(Breadth-First Search) = Gacentgro oo it e

by no more than 2

Problem: Find all locations that are reachable from the start,

and compute their distance.

Algorithm: Sample Map:
Create an empty queue Q; enqueue start — Q
Initialize all distances < -1 (unreachable), except distance(start) < 0

while Q not empty {

dequeue from Q — current

if next is neighbour of current and distance(next) == -1 {

distance(next) = distance(current) + 1

enqueue next — Q

Distance:

Q " (0,0)(0,1)(1,0)(1,1)(2,0)(1,2)(2,1)(3,0)(2,2)(4,0)(2,3)(4,1)(5,0)(3,3)(5,1) ---

Dist: o 1 1 2 2 3 3 3 4 4 5 5 5 6 6

Queue Implementation

Queue Interface:

a sequence of data in FIFO order
create ()
enqueue (x)

dequeue (

)
1sEmpty ()

Implement using a Linked List

e create () and isEmpty () are trivial
e for enqueue (x) and dequeue (), only issue Is to
decide which end of the list

Queue Implementation: Algorithms

head tail

create () :
insert o(1)
return LLcreate () ;
remove o(1)
1sEmpty (Q) :
return (Q—>head == NULL) ;

enqueue (Q, x):

LLappend (Q, x);

dequeue (Q) :

return LLremoveHead (Q) ;

Information Hiding in C

typedef LL t queue t;<

// Creates a pointer to a new empty queue.

// Returns NULL on failure.
queue t * -:reate(void);

// Recycles a queue

void -jestroy (queue t * q);
// Returns 1 1iff queue is empty

-sEmpty queue t * q);

// Adds element to the back of the queue

void -enqueue queue t * g, int element);

// Removes element from the front of the queue.

// Undetermined behaviour if queue is empty

-:lequeue queue_ t * q);

An invitation for disaster!

Encourages abuse or
misuse by calling the linked
list functions on the type
queue t *.

Better would be:

typedef struct queue
queue t;

which hides all information.

Marrying Data and Functions

Encapsulation
e bundle related data and operations together

Forge a language construct that marries data
and operations together

® Use astruct!

e make the functions part of the data type explicitly
o called methods

e similar idea to an object in Python

Adds another level of protection against misuse

typedef struct queue {

LL t * intlist;

<

} queue t;

queue t * queue create(void);

-

void queue destroy(queue t * q);

int queue isEmpty(queue t * q);

th queue dequeue (queue t * q);

void queue enqueue (queue t * g, int element);

~

J

typedef struct queue {

LL t * intlist;

void queue destroy(queue t * Qq);

int queue isEmpty(queue t * q);
void queue enqueue (queue t * q,
int queue dequeue (queue t * q);

} queue t;

queue t * queue create(void);

int element);

typedef struct queue {

LL t * intlist;

<

} queue t;

queue t * queue create(void);

-

void queue destroy(queue t * q);

int queue isEmpty(queue t * q);

th queue dequeue (queue t * q);

void queue enqueue (queue t * g, int element);

~

J

typedef struct queue {

LL t * intlist;

void queue destroy(struct queue * q);

int queue isEmpty(struct queue * q);
void queue enqueue (struct queue * q,
int queue dequeue (struct queue * q);

} queue t;

queue t * queue create(void);

int element) ;

typedef struct queue ({ Q
LL t * intlist; %
} queue t; \%\

queue t * queue create (void);

-

void queue destroy(queue t * q); i\

int queue isEmpty(queue t * q); Yﬂ

void queue enqueue (queue t * g, int element);

. * .
th queue dequeue (queue_ t q) ; 4/

typedef struct queue {
LL t * intlist;

void | (* destroy) “

int (* isEmpty) (struct queue * q);

void (* enqueue) (struct queue * g, int element);
int (* dequeue) (struct queue * q);

} queue t;

queue t * queue create (void);

A Look Ahead to C++

Motivated by these interface issues,
C++ evolved out of C. Y .
e formulated by Bjarne Stroustrop in 1978 N e

Provides the syntactic sugar for:

e information hiding |

.......
.

e encapsulation of data and methods Bjarne Stroustrop

e common code re-use situations

Migrate from struct — class

