
Linked List Operations
CMPT 125

Mo Chen

SFU Computing Science

14/2/2020

Lecture 18

Today

● Linkable Nodes

● LLcreate(...)

● LLappend(...)

● LLprint(...)

● LLsearch(...)

Linked Lists (Review)

On each append, malloc one new element

● keep a pointer to find the next element in the sequence

17-82534

append(34);

append(25);

append(-8);

append(17);

25

-8

17
34 17

head tail

?NULL

heap space

Coding Idea: parcel the element with the pointer
● use a struct for convenience

● called a node

typedef

● Rename variable types

struct

● Structure: custom data types that contain

other data
○ Can hold any data type, include pointers and other

structures

struct

● Structure: custom data types that contain

other data
○ Can hold any data type, include pointers and other

structures

struct

● Structure: custom data types that contain

other data
○ Can hold any data type, include pointers and other

structures

struct node_t *

struct node_t x1, x2;

struct node_t {

int data;

next;

};

Linkable Nodes

struct node_t *

typedef struct {

int data;

node_t * next;

node_t x1, x2;
struct node_t x1, x2;

struct node_t {

int data;

next;

}; } node_t;

Can declare a pointer within a struct of

the same type

● but would prefer node_t x1, x2;

over struct node_t x1, x2;

● try typedef

Linkable Nodes

struct node_t *

typedef struct {

int data;

node_t * next;

node_t x1, x2;
struct node_t x1, x2;

struct node_t {

int data;

next;

}; } node_t;

Forward reference is no good

● a prototype is required

Can declare a pointer within a struct of

the same type

● but would prefer node_t x1, x2;

over struct node_t x1, x2;

● try typedef

Linkable Nodes

struct node_t *

int data;

node_t x1, x2;

typedef struct {

int data;

node_t * next;

node_t x1, x2;
struct node_t x1, x2;

struct _node * next;

struct node_t {

int data;

next;

}; } node_t;

Forward reference is no good

● a prototype is required

Can declare a pointer within a struct of

the same type

● but would prefer node_t x1, x2;

over struct node_t x1, x2;

● try typedef

Linkable Nodes

typedef struct _node {

} node_t;

struct node_t *

int data;

node_t x1, x2;

typedef struct {

int data;

node_t * next;

node_t x1, x2;
struct node_t x1, x2;

struct _node * next;

struct node_t {

int data;

next;

}; } node_t;

Forward reference is no good

● a prototype is required

Can declare a pointer within a struct of

the same type

● but would prefer node_t x1, x2;

over struct node_t x1, x2;

● try typedef

Linkable Nodes

typedef struct _node {

} node_t;

struct node_t *

int data;

node_t x1, x2;

typedef struct {

int data;

node_t * next;

node_t x1, x2;

struct _node * next;

struct node_t {

int data;

next;

}; } node_t;

Forward reference is no good

● a prototype is required

Can declare a pointer within a struct of

the same type

● but would prefer node_t x1, x2;

over struct node_t x1, x2;

● try typedef

Linkable Nodes

typedef struct _node {

} node_t;

typedef struct node_t node_t;

node_t x1, x2;

Node structure and typedef

● Node used in linked lists

● Use typedef reduce annoyance

● “Shortcut”

struct node_t {

int data;

struct node_t * next;

};

typedef struct _node {

int data;

struct _node * next;

} node_t;

Declaring a node_t: struct node_t node1;

typedef struct node_t node_t;

Declaring a node_t: node_t node1;

Declaring a node_t: node_t node1;

Building a Linked List

Strategy: Maintain a pointer to the head

element and a pointer to the tail.

● Q. What types are these?

● Q. When declared, with what values are head,

tail initialized?

A linked list can be uniquely specified by its

head pointer.

● keep tail pointer around for convenience

Building The Interface

Put all declarations in the header file

● typedef LL_t

● function prototypes

Put implementation in a corresponding .c file

● keep details hidden from other programs

Q. What sort of operations would you perform

on a list?

Two big steps:

● allocate new node

● maintain head, tail

Q. When does head change?

Q. When does tail change?

NULL

Linked List: append(x)

81100head :

tail :

intlist :

append(64);

64 NULL

Two big steps:

● allocate new node

● maintain head, tail

Q. When does head change?

Q. When does tail change?

Linked List: append(x)

81100head :

tail :

intlist :

append(64);

64 NULL64

81

Two big steps:

● allocate new node

● maintain head, tail

Q. When does head change?

Q. When does tail change?

Linked List: append(x)

64100 NULLhead :

tail :

intlist :

81

append(64);

64

Two big steps:

● allocate new node

● maintain head, tail

Q. When does head change?

Q. When does tail change?

Linked List: append(x)

64100 NULLhead :

tail :

intlist :

81

append(64);

64

append(49);

49

All the steps:

● malloc a new node_t

● fill in the fields of the new node

● tail->next = newNode;

● tail = newNode;

NULL

Two big steps:

● allocate new node

● maintain head, tail

Q. When does head change?

Q. When does tail change?

Linked List: append(x)

64100head :

tail :

intlist :

81

append(64);

64

append(49);

49 NULL

64

49

All the steps:

● malloc a new node_t

● fill in the fields of the new node

● tail->next = newNode;

● tail = newNode;

Two big steps:

● allocate new node

● maintain head, tail

Q. When does head change?

Q. When does tail change?

Linked List: append(x)

64100head :

tail :

intlist :

81

append(64);

64

append(49);

64 49 NULL

All the steps:

● malloc a new node_t

● fill in the fields of the new node

● tail->next = newNode;

● tail = newNode;

But why does it seg fault?

Two big steps:

● allocate new node

● maintain head, tail

Q. When does head change?

Q. When does tail change?

Linked List: append(x)

64100head :

tail :

intlist :

81

append(64);

64

append(49);

64 49 NULL

All the steps:

● malloc a new node_t

● fill in the fields of the new node

● tail->next = newNode;

● tail = newNode;

But why does it seg fault?

Two big steps:

● allocate new node

● maintain head, tail

Q. When does head change?

Q. When does tail change?

Linked List: append(x)

head :

tail :

intlist :

● fill in the fields of the new node

● tail = newNode;

● tail->next = newNode;

All the steps:

● malloc a new node_t

But why does it seg fault?

NULL

NULL

Appending to the empty list

is a corner case that must

be handled separately.

Linked List: print()

6481100 49100 496481 NULLhead :

tail :

intlist :

6481

Expected output:

100 81 64 49

Strategy: Dereference all pointers in

sequence starting with head.

● then head->next

● then head->next->next, etc.

● stop when NULL is reached

Output:

100 81 64 49

current: current: current: current:

curr = head

while(curr != NULL) {

print curr->data

curr = curr->next

}

Linked List: search(target)

81100 81 49100 64 NULL

curr = head

head :

tail :

if equal then

return 1

search(64) returns 1

search(58) returns 0

intlist :

64

current: current: current:

Q. What’s the strategy this time?

● similar to print()
return 0

while(curr != NULL) {

curr = curr->next

}

● instead of print, return 1 if

found

