
Abstract Data Types
CMPT 125

Mo Chen

SFU Computing Science

12/2/2020

Lecture 17

Today

● Abstract Data Types

● Interfaces

● Dynamic Arrays

● Linked Lists

Stacks (Review)

A stack is an ordered collection of items, to which you may
insert an item (a push) or remove an item (a pop), where
removal follows a last-in-first-out order (LIFO).

● the definition of a stack was independent from its
implementation

● the first example of an abstract data type

Abstract data type (ADT): a collection of data
and a set of allowed operations on that data.

● describes data + operations, not how the data are
stored or how operations are carried out

Stacks (Review)

A stack is an ordered collection of items, to

which you may insert an item (a push) or

remove an item (a pop), where removal follows

a last-in-first-out order (LIFO).

a stack of plates a stack of passengersa stack of books

Abstract data type (ADT): a collection of data

and a set of allowed operations on that data.
● specifies data and operations, not how the data are

stored or how operations are carried out

● different from the data structure, which deals with

the implementation

Abstract Data Types

Data structure Data + operations

● Usage of the ADT● Implementation of

the ADT

Interact via an interface
vs.

Another Common ADT

Queue ADT: A queue is another sequence of

data, but the insert / remove operations work

on opposite ends of the sequence.

● order is first-in-first-out (FIFO)

● like a line-up

queue for service queue of traffic queue of food

Interfaces

An interface refers to an expected collection of

data and behaviours

● parametrized by inputs

● serves as a contract

Q. What interfaces have you seen in CMPT 125?

● functions, pre-, post-conditions, invariants

● collections of functions, typedefs, constants

● header files

Code re-usage

Code independence

A tale of three programmers

Why use interfaces?

Interface:
● a sequence of

data

● read element

● set element

● append

Algorithm that

implements a

resizable ADT

Algorithm that

requires a

resizable data

type

Code re-usage

Code independence

A tale of three programmers

Why use interfaces?

Interface:
● a sequence of

data

● read element

● set element

● append

Code that

instantiates and

uses a

resizable ADT

Resizable ADT,

implemented

using arrays

Code re-usage

Code independence

A tale of three programmers

Why use interfaces?

Interface:
● a sequence of

data

● read element

● set element

● append

Code that

instantiates and

uses a

resizable ADT

Resizable ADT,

implemented

using arrays

Resizable ADT,

implemented

by linked lists

Code re-usage

Code independence

A tale of three programmers

Why use interfaces?

Interface:

● function spec

● preconditions

● return codes

● . . .

Implementation

of an ADT

Code that uses

an ADT,

according to its

interface

Code re-usage

Code independence

A tale of three programmers

Why use interfaces?

Interface:

● function spec

● preconditions

● return codes

● . . .

Implementation

of an ADT

Code that uses

an ADT,

according to its

interface

Code re-usage

Code independence

A tale of three programmers

Why use interfaces?

Interface:

● function spec

● preconditions

● return codes

● . . .

Implementation

of an ADT

Code that uses

an ADT,

according to its

interface

Code re-usage

Code independence

A tale of three programmers

Why use interfaces?

Interface:

● function spec

● preconditions

● return codes

● . . .

Implementation

of an ADT

Code that uses

an ADT,

according to its

interface

testing feedback

Software Engineering Principles

Encapsulation

● bundle related data and operations together

Modularity

● break up the problem into smaller, manageable

programming tasks

Information Hiding

● keep the implementation details private

● keep the interface stable

Finding a good selection of interfaces is the

foundation for writing large scale software

Fleshing out some ADTs

Q. What sort of data (properties) and

operations (functions) would apply to:

Stack ADT:

● a sequence of data

● last in first out order

● insert (push)

● remove (pop)

● isEmpty

● top

● size (length)

Appendable array ADT:

● a sequence of data

● append (to the end)

● size (length)

● access (get)

● change (set)

● top

● size (length)

One possible implementation is an array

● keep track of current length

● keep a pointer to the array

● access -

● change -

● append -

trivial + bounds check

trivial + bounds check

not so trivial - malloc and copy

Q. What’s the total running time

for N appends?

Appendable Array ADT

memory allocation

Linked Lists

Another Idea: malloc one item on each append

● items might not be contiguous anymore

● Q. How to find next item in the sequence?

● use a sequence of pointers

Refined Idea: malloc one item + one pointer on

each append.

17-82534

append(34);

append(25);

append(-8);

append(17);

25

-8

17
34 17

head tail

?NULL

heap space

memory allocation

Heap Memory vs. Stack Memory

● Heap memory
○ Special command needed to add

(malloc, new) and remove (free,
delete) variables

○ Useful for ADTs that vary in size
○ Different variables typically do not

occupy contiguous memory locations

● Stack memory
○ Memory used to hold the function call

stack
■ Includes local variables and

function parameters
○ No special commands or manual

maintenance needed
○ Cannot resize easily, since

everything is in the function call stack

