

Quick Sort

CMPT 125 Mo Chen SFU Computing Science 10/2/2020

Lecture 16

Today:

- Quick sort
- Introduction to Generics
- Library Sorting

Sorting by Recursion (Review)

Use Divide and Conquer to sort recursively.

- 1. Split the array into two roughly equal pieces.
- 2. Recursively sort each half.
 - This works because each piece is smaller.
- 3. Join the two pieces together to make one sorted array.

Two famous sorts behave this way: *mergesort* and *quicksort*.

Quick Sort

Strategy: Divide and Conquer

- 1. Split the array into two roughly equal pieces.
 - partition by a pivot element, x
- 2. Recursively sort each half.
 - two recursive calls to sort()
 - assume smaller cases are sorted correctly
- 3. Join the two pieces together to make one sorted array.
 - trivial

Example

Quick Sort Code

```
// Post: arr[first..last] are sorted
void quickSort(int arr[], int first, int last) {
```

- Base case
 - return if fewer than 2 elements
- Split array into two roughly equal pieces
 - partition around a pivot element
 - pivot element in correct position → mid

// INCOMEDENCE, DOLC

Recursively sort each piece

Quick Sort Code

```
// Post: arr[first..last] are sorted
void quickSort(int arr[], int first, int last) {
    // Base case
    if (last <= first) return;</pre>
   // Split array
   int mid = partition(arr, first, last);
    // Recursively sort
    quickSort(arr, first, mid-1);
    quickSort(arr, mid+1, last);
```

Partition

Q. How long does it take to partition N elements?

Strategy: Compare pivot with each element

- If less than pivot, put on left piece
- If greater than pivot, put on right piece

How to develop each piece?

There are many implementations of partition.

To make our own, visualize a partially partitioned array:

≤ pi≰opti≰optivot

≥ pivot ≥ pivot ≥ pivot ≥ pivot ≥ pivot compared yet

Need two indices:

- index to scan through the array of indices (sweep)
 - o marks end of the second piece
- index to mark end of the first piece (mid)
 - Q. What's the last step?
 - Place the pivot
 - swap with arr[mid]

Algorithmic Strategy:

- if arr[sweep] > pivot then
 - add it to the second piece
 - (do nothing)
- if arr[sweep] < pivot then
 - add it to the first piece
 - swap with arr[mid+1]
 - o mid++

Running Time Analysis

What's the worst case running time?

- depends on the partition
- if it's an even split, then O(N logN) like Merge Sort.
- Q. What if it's a uneven split on every partition?
- $O(N^2)$ like Insertion Sort

It turns out that Quick Sort works well over all possible permutations of arrays

- $O(N \log N)$ in the average case
- Most implementations pick a random pivot

Generic Sorts

There is a function qsort() in <stdlib.h>
Parameters:

- a comparator function
- an arbitrary array of data

Remember that arrays are specified by:

- base address
- type
- number of elements

C++ uses the *template* construct to make generic typing easier

Generics promote code reuse by generalizing algorithms over different types

For great sound effects:

https://youtu.be/92BfuxHn2XE

 For great sound effects: https://youtu.be/8oJS1BMKE64

For great sound effects:

https://youtu.be/ZRPoEKHXTJg

For great sound effects:

https://youtu.be/9IqV6ZSjual

https://youtu.be/ZZuD6iUe3Pc

