Quick Sort

CMPT 125
Mo Chen

SFU Computing Science
10/2/2020

Lecture 16

Today:

e Quick sort
e [ntroduction to Generics
e Library Sorting

Sorting by Recursion (Review)

Use Divide and Conguer to sort recursively.

1. Split the array into two first piece second piece
roughly equal pieces. e
2. Recursively sort each half. |
e This works because [sort (first piece)][sort (second piece)]
each piece is smaller.
3. Join the two pieces — o
together to make one \/
sorted array. [IS T—]

Two famous sorts behave this |
way. mergesort and quicksort. sorted

Quick Sort

not sorted
Strategy: Divide and Conquer
1. Split the array into two [partition()]
roughly equal pleceS. first piece l second piece
e partition by a pivot element, x ——m™ —— __—
not sorted < x x | notsorted 2 x
2. Recursively sort each half.
e two recursive callsto sort () z ¥
e assume smaller cases are [sort (first piece)] [sort (second piece) J

to make one sorted array.
e trivial

sorted correctly
3. Join the two pieces together“

22 0 5 49 42 25 23 -8 -3 6

\ Partition

-4 0 5 -8 -3 6 . 18 22 49 42 25 23

Recursively Sort Recursively Sort

v v

v ¢ Vs ¥V VY s Y

Quick Sort Code

// Post: arr[first..last] are sorted

vold quickSort (int arr[], 1int first, int last) {

e Base case
o return if fewer than 2 elements

e Split array into two roughly equal pieces

o partition around a pivot element
o pivot element in correct position — mid

EoY ™ T 7 LV -y — —

e Recursively sort each piece

Quick Sort Code

// Post: arr|[first..last] are sorted

vold quickSort (int arr[], int first, 1int last) {
// Base case

i1f (last <= first) return;

// Split array

int mid = partition(arr, first, last);

// Recursively sort
quickSort (arr, first, mid-1);

quickSort (arr, mid+1, last);

Partition

Q. How long does it take to partition N elements?

<15:| -4 0 5 -8 -3 6

pivot Left piece

215 18 22 49 42 25 23

Right piece

Strategy. Compare pivot with each element
e If less than pivot, put on left piece
e If greater than pivot, put on right piece

How to develop each piece?

There are many implementations of partition.

e To make our own, visualize a partially partitioned array:

Need two indices:

index to scan through the array
of indices (sweep)
o marks end of the second piece

index to mark end of the first

mid mid mid mid SWEeep SWeep sweep Sweep sweep
6 -4 0 5 -8 -3 15 42 25 23 18 22 49
< pigqpivopigqbivot > pivgpivot = pivot = pivot = piebtompared yet

Algorithmic Strategy:

e ifarr[sweep] > pivot then

o add it to the second piece
o (do nothing)

e ifarr[sweep] <pivotthen

piece (mid)

Q. What's the last step?

e Place the pivot
e swap with arr [mid]

o add it to the first piece

o swap with arr [mid+1]
O mid++

Running Time Analysis

What's the worst case running time?

depends on the partition

if it's an even split, then O(N logN) like Merge Sort.
Q. What if it's a uneven split on every partition?
O(N?) like Insertion Sort

It turns out that Quick Sort works well over all
possible permutations of arrays

e O(NlogN) in the average case
e Most implementations pick a random pivot

Generic Sorts

There Is a function gsort () In <stdlib.h>
Parameters:

e a comparator function
e an arbitrary array of data

Remember that arrays are specified by:

e base address C++ uses the template
A construct to make generic
e type typing easier

e number of elements

Generics promote code reuse by generalizing
algorithms over different types

Sorting Algorithms: Summary

e [or great sound effects:
https://youtu.be/92BfuxHn2XE

Selection Sort - 31 comparisons, 61 array accesses, 60 ms delay http://panthema.net/2013/sound-of-sorting

https://youtu.be/92BfuxHn2XE

Sorting Algorithms: Summary

e [or great sound effects:
https //voutu be/80381B|\/IKE64

http://panthema.net/2013/sound-of-sorting

https://youtu.be/8oJS1BMKE64

Sorting Algorithms: Summary

e [or great sound effects:
https://youtu.be/ZRPoEKHXTJg

Merge Sort - 30 comparisons, 99 array accesses, 35 ms delay http://panthema.net/2013/sound-of-sorting

https://youtu.be/ZRPoEKHXTJg

Sorting Algorithms: Summary

e [or great sound effects:
https //voutu be/9IqV6ZS|uaI

Quick Sort (LL ptrs) - , 50 ms delay http://panthema.net/2013/sound-of-sorting

https://youtu.be/9IqV6ZSjuaI

https://youtu.be/ZZuD6iUe3Pc

