Assignment Announcements

Assignment 2:
e 1c compiles on Ubuntu. MacOS can behave
differently

e 2c has been omitted from the assignment.
Revised solutions will be posted

Assignment 3:
e 1b: row 3 of the table has been corrected

Merge Sort

CMPT 125
Mo Chen
SFU Computing Science
7/2/2020

Lecture 15

Today
e Merge Sort: a Divide and Conquer Sort

Different Sorts of Sorts

So far, we have seen two implementations of
sorting:
e Selection Sort - find the min, swap it with position O;
find the second min, swap it with position 1; . . . ;
working incrementally - O(IN?)

e Insertion Sort - incrementally insert an element to a
growing list of sorted elements - also O(N?)

To get better performance, we need a non-
Incremental algorithm

Sorting by Recursion

Use Divide and Conguer to sort recursively.

1. Split the array into two first piece second piece
roughly equal pieces. e
2. Recursively sort each half. |
e This works because [sort (first piece)][sort (second piece)]
each piece is smaller.
3. Join the two pieces — o
together to make one \/
sorted array. [IS T—]

Two famous sorts behave this |
way. mergesort and quicksort. sorted

Merge Sort

_ _ not sorted
1. Split the array into two
rough|y equa| pieces_ first piece second piece
e splitbyindex: [first..mid] N IS

and [mid+1..last]

\ 4 VL
[sort (first piece)][sort(secondpiece)]

2. Recursively sort each half.
e two recursive callsto sort ()
e assume smaller cases are
sorted correctly

3. Join the two pieces together
to make one sorted array. [join (first, second)]

e Q. How can you quickly combine
two sorted pieces into one? *
e Merge the two arrays

Example

15 -4 18 22 0 5 49 42 25 23 -8 -3 6

Split
15 -4 18 22 0 5 49 42 25 23 -8 -3 6
Recursively Sort Recursively Sort
-4 0 5 15 18 22 49 -8 -3 6 23 25 42
Merge?

Merge strategy is similar to Selection Sort: repeatedly find the min and place it.

Q. How much time is required to find the min?
e it must be one of the heads of the two sorted subarrays. = O(1)

Merge Example

Strategy:

1. Find the min. Where is it?

e It must be one of the heads of the two sorted subarrays
e Compare and take the smaller.

2. Place the min into the next sequential position.

Reqt

oo g L i ety

MergeSort Code

// Post: arr[first..last] are sorted

vold mergeSort (int arr[], 1int first, int last) {

e Base case
o return if fewer than 2 elements

=

e Split array into two roughly equal pieces
o compute mid element

Y 1 e

e Recursively sort each piece

e Join the two sorted pieces together by merging
o place the smallest min of each sorted piece

MergeSort Code

// Post: arr[first..last] are sorted
void mergeSort (int arr[], 1int first, 1int last) {
// Base case

if (last <= first) return;

// Split array
int mid = (first+last) / 2;

// Recursively sort
mergeSort (arr, first, mid);

mergeSort (arr, mid+1, last);

// Join

merge (arr, first, mid, last);

Merge Code

//
//

Pre: arr[first..mid] and arr[mid+1l..last] are sorted

Post: arr[first..last] are sorted

void merge (int arr[], int first, int mid, int last) {

An array bounds error
occurs when you run
out of elements from
the left piece or on the
right piece.

e Repeat for N elements

left

® Take the smallest unplaced element and place into
position
O Maintainindices left, right for the heads of each piece

O Compare the heads
O Place the min in sequence into a temporary array

f tlieftlieftr i ght

il last

arrCpy (newArr, arr + first, len);

} newArr[]:

newP PoeyvPoeWVPoeyvPoewWPoswPo

newArr [newPos] = arr
left++;

post-increment operator. Equivalent code:

[left];

Merge Code

// Pre: arr[first..mid] and arr[mid+l..last] are sorted
// Post: arr[first..last] are sorted
void merge (int arr[], int first, int mid, int last) {

int len = last-first+l; int newArr[len];

int left = first; int right = mid+1;

for (int newPos = 0; newPos < len; newPos++) {

if (arr[left] < arr[right]) {
newArr [newPos] = arr[left++];

} else {

newArr [newPos] = arr[right++];

}

// arrCpy(source, destination, number of elemen%gs)

arrCpy (newArr, arr + first, len);

post-increment operator. Equivalent code:
newArr [newPos] = arr[left];

left++;

A Bug!

The merge strategy:

e Take the smallest [remaining] element of each
sorted piece and place into position
e Fails when one piece runs out of elements

Solutions:

e Append +« to the end of each piece
o good in theory, but has practical issues

e Copy remaining elements from unfinished piece
o a while loop will be required

Merge Code - Fixed

// Pre: arr[first..mid] and arr[mid+1l..last] are sorted
// Post: arr[first..last] are sorted
void merge(int arr[], int first, int mid, int last) {
int len = last-first+1l; int newArr[len];
int left = first; int right = mid+1; int newPos = 0;
while(left <= mid && right <= last) {
if (arr[left] < arr[right]) {
newArr[newPos++] = arr[left++];
} else {

newArr[newPos++] = arr[right++];

}
// Flush non empty piece
arrCpy(arr + left, newArr + newPos, mid - left + 1);

arrCpy(arr + right, newArr + newPos, last - right + 1);

arrCpy(newArr, arr + first, len);

}
Q. What's the running time for merge () ?

leftleft right

2 15 | 26 1 27 | 32
first mid last
newPogwPos
1 2 15 | 26

Running Time Analysis « 0N work per row

e O(logN) rows

= O(NlogN) running time

Visualize with a recursion tree:

QJergavYrelemeotk per row.?

8

rows?

Visualization

Merge Sort - 543 comparisons, 1829 array accesses, 10 ms delay http://panthema.net/2013/sound-of-sorting

