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Lecture 14

Today:

● Induction with strings

● Why Correctness is Important

● Invariants of Recursive Algorithms

● Running Time of Recursive Algorithms



Example: Reversing a String S

reverse(“stressed”) returns “desserts”

head(“stressed”) = “s”

tail(“stressed”) = “tressed”

X ←  S; Y ←  “”

while X not empty do:

Y ←  head(X) + Y

X ←  tail(X)

return Y

certainly for any nonempty S:

S = head(S) + tail(S)



Adding Invariants & Checkpoints

X <- S; Y <- “”

while X not empty do:

Y <- head(X) + Y

X <- tail(X)

return Y

What’s a good invariant?

S = reverse(Y) + X

checkpoint 1: before the first loop

checkpoint 2: at the end of each loop



Proving the Invariant

X <- S; Y <- “”

chkpt 1: // inv:  S = reverse(Y) + X

while X not empty do:

Y <- head(X) + Y

X <- tail(X)

chkpt 2: // inv:  S = reverse(Y) + X

return Y

Is it true at checkpoint 1?

Yes.

reverse(Y) + X 

= reverse(“”) + X 

= “” + X = X

Is it true at checkpoint 2?

Execute checkpoint to checkpoint:  

If the invariant is true at the 

beginning of the loop, then is it 

true at the end of the loop.



Proving the Invariant

Suppose that S = reverse(Y) + X at the 

beginning of some loop.  

Then after running the next loop: 

Y’ = head(X) + Y and X’ = tail(X)

Now check invariant:

reverse(Y’) + X’ = reverse(head(X) + Y) + tail(X) 

= reverse(Y) + head(X) + tail(X) 

= reverse(Y) + X = S.



Proving the Invariant

X <- S; Y <- “”

chkpt 1: // inv:  S = reverse(Y) + X

while X not empty do:

Y <- head(X) + Y

X <- tail(X)

chkpt 2: // inv:  S = reverse(Y) + X

return Y

Is it true at checkpoint 1?

Yes.

reverse(Y) + X 

= reverse(“”) + X 

= “” + X = X

Is it true at checkpoint 2?

Execute checkpoint to checkpoint:  

If the invariant is true at the 

beginning of the loop, then is it 

true at the end of the loop.



One Last Detail

So, the invariant holds at the beginning of the 

first loops, and at the end of every successive 

loop.  Including the last loop!

● When X = “”, the loop terminates

● S = reverse(Y) + X = reverse(Y).  

● Therefore Y = reverse(S).

But does the loop terminate?

● Another invariant:  that |X| is natural and 

decreasing.



Why Correctness is Important

Incorrect programs can be costly.

Famous Bugs:

In the early 1960s, one of the American 

spaceships in the Mariner series sent to 

Venus was lost forever at a cost of 

millions of dollars, due to a mistake in a 

flight control computer program.

Headline:  “The most expensive hyphen in history.”

Mariner 1 Probe (1962)



Famous Bugs

Therac-25 (1986)

In a series of incidents between 1985 

and 1987, several patients received 

massive radiation overdoses from 

Therac-25 radiation-therapy systems:

● three of them died from 

resulting complications.

Therac-25 had been “improved” from previous models:

● the hardware safety interlocks from previous models 

had been “upgraded” by replacing them by software 

safety checks.



Famous Bugs

Some years ago, a Danish lady received, 

around her 107th birthday, a computerized 

letter from the local school authorities with 

instructions as to the registration procedure 

for first grade in elementary school.
● Program used two decimal digits to represent “age”.

This is similar in nature, but miniscule in 

scale in comparison, to the “Y2K bug”.
● Millions of programs used two digits for the year, 

assuming a “standard” 1900-prefix.



Not so Famous “Bug”

A few years ago, I was working with NASA on 

an automated emergency landing algorithm for 

planes with unexpected engine failure. In initial 

simulation testing, we found that the turn radius 

of the plane was 5 km (expected: a few 

hundred metres). 

Thanks to well-tested and documented code, 

we figured out which part of the data was in 

metric, and which part was in imperial.



Computers Do Not Err

Algorithms for computer execution are written in a formal 

unambiguous programming language

● Cannot be misinterpreted by the computer

Modern hardware is essentially bug-free.  So, if our bank 

statement is in error and the banker mumbles that the 

computer made a mistake, we can be sure that it was not 

the computer that erred.  

Either:

● incorrect data was input to a program; or

● the program itself contained an error

Similar programmer acronyms: PEBKAC RTFM 



Testing and Debugging

The more you test your program, the more 

likely you are to find bugs.  Test sets can find:

● run-time errors

● logic errors

● infinite loops

But results are only as good as your test sets.

● Some bugs might never be discovered.

● Q.  Is a test set as strong as a proof of a 

loop invariant?



Proving Correctness

Use mathematical proof techniques to reason 

about algorithms/programs.

● E.g., assertions and loop invariants.

Can we automate this proof process?

● Does there exist some sort of “super-algorithm” that 

would accept as inputs:  a description of a problem P
and an algorithm A, and respond "yes" or "no"?

In general, this is just wishful thinking:  no such 

verifier can be constructed.



Loop Invariants (Review)

Use mathematical reasoning to capture the behaviour of an 

algorithm:

● State invariants at various checkpoints.

● Show that the invariant holds:
○ at the first checkpoint

○ during execution between checkpoints

● Conclude that the post-condition holds
○ the invariant holds at / after the last checkpoint 

Base case

Induction step

Termination



Last time:
The Algorithm (Pseudocode):

For each i from 0 to N - 1:

● Compute the ith square by 

adding i to itself i times.

● Compute the ith cube by 

adding the ith square to 

itself i times.

● Output the ith cube.

Do you believe that at the end 
of this loop, the value of

square will equal i*i?

//  Assertion:  square == j*i

Q.  What’s a good assertion?

Good assertions, also called 

loop invariants, are usually 

related to the post-condition.

int main () {

int N = 10;

for (int i = 0; i < N; i++) {

//  Compute square = i*i

int square = 0;

for (int j = 0; j < i; j++) {

square += i;

}

//  Compute cube = i*i*i

int cube = 0;

for (int j = 0; j < i; j++) {

cube += square;

}

printf("%d\n", cube);

}

}



Last time:
The Algorithm (Pseudocode):

For each i from 0 to N - 1:

● Compute the ith square by 

adding i to itself i times.

● Compute the ith cube by 

adding the ith square to 

itself i times.

● Output the ith cube.

Do you believe that at the end 
of this loop, the value of

square will equal i*i?

assert(square == j*i);

Q.  What’s a good assertion?

Good assertions, also called 

loop invariants, are usually 

related to the post-condition.

int main () {

int N = 10;

for (int i = 0; i < N; i++) {

//  Compute square = i*i

int square = 0;

for (int j = 0; j < i; j++) {

square += i;

}

//  Compute cube = i*i*i

int cube = 0;

for (int j = 0; j < i; j++) {

cube += square;

}

printf("%d\n", cube);

}

}

#include <assert.h>



//  Post:  Returns  n!

unsigned int fac(unsigned int n) {

if (n <= 1) {

return 1;

}

return n * fac(n-1);

}

Rule of Thumb:  You may assume the 

invariant holds for any smaller case.

Invariants and Recursion

n! = n x (n - 1)!, when n ≥ 2

Assumes that fac(n-1)

[correctly] returns (n-1)!

Definition of Factorial

0! = 1
1! = 1

Recursive sub call



Recursive Definition of beAnother Similar Example

//  Post:  Returns base**exp

int power(int base, unsigned int exp) {

b0 = 1
be = b x b(e - 1) when  e > 0

if (exp == 0) return 1;

return base * power(base, exp-1);

}

Again, you are allowed to assume that the 
recursive sub call to power(base, exp-1), 

a smaller case, returns the correct value.

Q.  What does the running time depend on?
● It varies with the value of exp

Let N be the value of the parameter exp

● T(N) = O(1) + T(N - 1)  when  N > 0
● T(0) = O(1)

A recurrence relation!

Solution:  T(N) = O(N)



Divide and Conquer Solution

Can you do better?

● Use Divide and Conquer

Key Observation:

● Can you be quick if exp is even?

● Can call power(base, exp/2) and 

square the result.

Remember that any smaller case is correct.

● Not only an incrementally smaller case.



Divide and Conquer Solution

int power(int base, unsigned int exp) {

if (exp == 0) return 1;

int x = power(base, exp/2);

if (exp % 2 == 1) {

return x * x * base;

} else {

return x * x;

}

}

● Again, let N be the value of exp

● T(N) = O(1) + T(N/2) when  N > 0
● T(0) = O(1)

Solution:  T(N) = O(logN)

Q.  What’s the running time?



Use Divide and Conquer to sort recursively.

2. Recursively sort each half.

Sorting by Recursion

not sorted not sortednot sorted

first piece second piece

sort(first piece) sort(second piece)

sortedsorted

join(first, second)

sorted

3. Join the two pieces 

together to make one 

sorted array.

1. Split the array into two 

roughly equal pieces.

● This works because 

each piece is smaller.

Two famous sorts behave this 

way:  mergesort and quicksort.


