
A Puzzle For You

Problem: Write a program to output the 

first N cubes, but without using 

multiplication (only addition/subtraction).

Historically, CPUs are relatively slow at 

multiplication  vs  addition/subtraction.

● The differences can be small (3x) 

or large (20x).

N = 10

Output:

0

1

8

27

64

125

216

343

512

729
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Lecture 13

Today:

● Assertions and Invariants

● Good Invariants and Post-Conditions

● Proving Programs Correct



Puzzle Solution
The Algorithm (Pseudocode):

For each i from 0 to N - 1:

● Compute the ith square by 

adding i to itself i times.

● Compute the ith cube by 

adding the ith square to 

itself i times.

● Output the ith cube.

Do you believe that at the end 
of this loop, the value of

square will equal i*i?

//  Assertion:  square == j*i

Q.  What’s a good assertion?

Good assertions, also called 

loop invariants, are usually 

related to the post-condition.

int main () {

int N = 10;

for (int i = 0; i < N; i++) {

//  Compute square = i*i

int square = 0;

for (int j = 0; j < i; j++) {

square += i;

}

//  Compute cube = i*i*i

int cube = 0;

for (int j = 0; j < i; j++) {

cube += square;

}

printf("%d\n", cube);

}

}



What makes a good loop invariant?

A loop invariant is a 

statement that is true 

every loop.

● usually asserted at the 

beginning of the loop

● usually parametrized by the 

loop index (j in this case)

//  Post:  square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

//  Assertion:  square == j*i

square += i;

}

A good loop invariant should indicate the progress of the 

algorithm

● the invariant should carry all state information, loop to loop.

● the invariant should imply the post-condition (the goal of the algorithm) at 

the end of the last loop.



Use mathematical reasoning to 

capture the behaviour of an 

algorithm:

● State invariants at various checkpoints.

● Show that the invariant holds:
○ at the first checkpoint

○ during execution between checkpoints

● Conclude that the post-condition holds
○ the invariant holds at / after the last checkpoint 

Proving Correctness

Base case Induction step Termination

//  Post:  square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

//  Assertion:  square == j*i  

square += i;

}

true when j == 0

if true for loop j, then true for next j

true when j == i



Termination:

● Since the invariant holds for all j, it holds after the last loop.

○ Therefore, when j == i, square == i*i.

Proof

Base case:

//  Post:  square == i*i

int square = 0;

for (int j = 0; j < i; j++) {

//  Assertion:  square == j*i  

square += i;

}

● Is the invariant true on the first loop?

○ When j == 0, square has been initialized to 0.  These values 

satisfy square == j*i.

Induction step:

● If the invariant holds at the beginning of loop j, does it also 

hold for the beginning of loop j+1?

○ At the beginning of loop j, square == j*i.  

○ After running the loop, square == j*i + i == (j+1)*i, which 

is the invariant of the next loop.



Yay - we proved it! So what?

We honestly won’t care whether or not you can do a proof of 

correctness 5 years from now in your job.  And neither will:

● your boss

● your co-workers

● ♥♥♥ your secret crush ♥♥♥

You learn to do proofs to get better at reasoning about code.

The more practiced you are at thinking about invariants:

● the better your resulting code will be

● the easier it will be to figure out other people’s code

A computer won’t be able to verify your programs for you

● in general, this is an impossible problem.



What does it do?

int main () {

int N = 10;

int a = 6;

int b = 1;

int c = 0;

for (int i = 0; i < N; i++) {

printf("%d\n", c);

c += b;

b += a;

a += 6;

}

}

Output:

0

1

8

27

64

125

216

343

512

729

Two ways to get started:

1.  Simulate the execution on paper.

2.  Key in the program and run it!

Q.  Why is this program significant?



int main () {

int N = 10;

int a = 6;

int b = 1;

int c = 0;

for (int i = 0; i < N; i++) {

printf("%d\n", c);

c += b;

b += a;

a += 6;

}

}

//  Assertion: b == 3*i*(i+1) + 1

//  Assertion: c == i*i*i

Base case: When i = 0, the assertions are:

//  Assertion: a == 6*(i+1)

● a = 6(0+1) = 6

● b = 3·0·(0+1) + 1 = 1

● c = (0)3 = 0

which are the 3 initial values for a, b, c.

//  Assertion: a = 6(i + 1)

//  Assertion: b = 3i(i + 1) + 1

//  Assertion: c = i3

What are the invariants?

Since the assertion c = i3 holds on every 

loop, the algorithm is correct.

Induction step: At the start of loop i, the 

assertions are:

● a = 6(i + 1)

● b = 3i(i + 1) + 1

● c = i3

After c += b; the value of c changes to

● c = i3 + 3i(i + 1) + 1

= i3 + 3i2 + 3i + 1

= (i + 1)3

After b += a; the value of b changes to

● b = 3i(i + 1) + 1 + 6(i + 1)

= (i + 1)(3i + 6) + 1

= 3(i + 1)(i + 2) + 1

After a += 6; the value of a changes to

● a = 6(i + 1) + 6

= 6(i + 2)

which are the values for a, b, c on loop i + 1.



int main () {

int N = 10;

int a = 6;

int b = 1;

int c = 0;

for (int i = 0; i < N; i++) {

printf("%d\n", c);

c += b;

b += a;

a += 6;

}

}

Base case: When i = 0, the assertions are:

● a = 6(0+1) = 6

● b = 3·0·(0+1) + 1 = 1

● c = (0)3 = 0

which are the 3 initial values for a, b, c.

//  Assertion: a = 6(i + 1)

//  Assertion: b = 3i(i + 1) + 1

//  Assertion: c = i3

What are the invariants?

Since the assertion c = i3 holds on every 

loop, the algorithm is correct.

Induction step: At the start of loop i, the 

assertions are:

● a = 6(i + 1)

● b = 3i(i + 1) + 1

● c = i3

After c += b; the value of c changes to

● c = i3 + 3i(i + 1) + 1

= i3 + 3i2 + 3i + 1

= (i + 1)3

After b += a; the value of b changes to

● b = 3i(i + 1) + 1 + 6(i + 1)

= (i + 1)(3i + 6) + 1

= 3(i + 1)(i + 2) + 1

After a += 6; the value of a changes to

● a = 6(i + 1) + 6

= 6(i + 2)

which are the values for a, b, c on loop i + 1.



Example: Reversing a String S

reverse(“stressed”) returns “desserts”

head(“stressed”) = “s”

tail(“stressed”) = “tressed”

X ←  S; Y ←  “”

while X not empty do:

Y ←  head(X) + Y

X ←  tail(X)

return Y

certainly for any nonempty S:

S = head(S) + tail(S)



Adding Invariants & Checkpoints

X <- S; Y <- “”

while X not empty do:

Y <- head(X) + Y

X <- tail(X)

return Y

What’s a good invariant?

S = reverse(Y) + X

checkpoint 1: before the first loop

checkpoint 2: at the end of each loop



Proving the Invariant

X <- S; Y <- “”

chkpt 1: // inv:  S = reverse(Y) + X

while X not empty do:

Y <- head(X) + Y

X <- tail(X)

chkpt 2: // inv:  S = reverse(Y) + X

return Y

Is it true at checkpoint 1?

Yes, because reverse(Y) + X 

= reverse(“”) + X = “” + X = X

Is it true at checkpoint 2?

Execute checkpoint to 

checkpoint:  If the invariant is 

true at the beginning of the 

loop, then is it true at the end 

of the loop.



Proving the Invariant

Suppose that S = reverse(Y) + X at the 

beginning of some loop.  Then after running the 

next loop Y’ = head(X) + Y and X’ = last(X)

So, just need to show that S = reverse(Y’) + X’.

reverse(Y’) + X’ = reverse(head(X) + Y) + 

last(X) = reverse(Y) + head(X) + last(X) = 

reverse(Y) + X = S.



One Last Detail

So, the invariant holds at the beginning of the 

first loops, and at the end of every successive 

loop.  Including the last loop!

● When X = “”, the loop terminates and S = 

reverse(Y) + X = reverse(Y).  Thus Y = 

reverse(S).

But does the loop terminate?

● Another invariant:  that |X| is natural and 

decreasing.


