A Puzzle For You

Problem: Write a program to output the first *N* cubes, but without using multiplication (only addition/subtraction).

Historically, CPUs are relatively slow at multiplication vs addition/subtraction.

• The differences can be small (3x) or large (20x).

The Correctness of Algorithms and Programs

CMPT 125 Mo Chen SFU Computing Science 3/2/2020

Lecture 13

Today:

- Assertions and Invariants
- Good Invariants and Post-Conditions
- Proving Programs Correct

Puzzle Solution


```
// Compute cube = i*i*i
int cube = 0;
for (int j = 0; j < i; j++) {
    cube += square;
}
printf("%d\n", cube);</pre>
```

}

The Algorithm (Pseudocode):

For each i from 0 to N - 1:

- Compute the ith square by adding i to itself i times.
- Compute the ith cube by adding the ith square to itself i times.
- Output the ith cube.

Do you believe that at the end of this loop, the value of square will equal i*i?

Q. What's a good assertion?

Good assertions, also called *loop invariants*, are usually related to the post-condition.

What makes a good loop invariant?

A loop invariant is a statement that is true every loop.

- usually asserted at the beginning of the loop
- usually parametrized by the loop index (j in this case)

```
// Post: square == i*i
int square = 0;
for (int j = 0; j < i; j++) {
    // Assertion: square == j*i
    square += i;
}</pre>
```

A good loop invariant should indicate the progress of the algorithm

- the invariant should carry all state information, loop to loop.
- the invariant should imply the post-condition (the goal of the algorithm) at the end of the last loop.

Proving Correctness

Use mathematical reasoning to capture the behaviour of an algorithm:

```
// Post: square == i*i
int square = 0;
for (int j = 0; j < i; j++) {
    // Assertion: square == j*i
    square += i;
}</pre>
```

- State *invariants* at various *checkpoints*.
- Show that the invariant holds:
 - at the first checkpoint
 - during execution between checkpoints
- Conclude that the post-condition holds
 - the invariant holds at / after the last checkpoint

- Is the invariant true on the first loop?
 - When j == 0, square has been initialized to 0. These values satisfy square == j*i.

Induction step:

- If the invariant holds at the beginning of loop j, does it also hold for the beginning of loop j+1?
 - At the beginning of loop j, square == j*i.
 - After running the loop, square == j*i + i == (j+1)*i, which is the invariant of the next loop.

Termination:

- Since the invariant holds for all j, it holds after the last loop.
 - Therefore, when j == i, square == i*i.

Yay - we proved it! So what?

We honestly won't care whether or not you can do a proof of correctness 5 years from now in your job. And neither will:

- your boss
- your co-workers
- **vvv** your secret crush **vvv**

You learn to do proofs to get better at reasoning about code.

The more practiced you are at thinking about invariants:

- the better your resulting code will be
- the easier it will be to figure out other people's code

A computer won't be able to verify your programs for you

• in general, this is an impossible problem.

What does it do?

<pre>int main () { int N = 10; int a = 6; int b = 1;</pre>	Two ways to get started:1. Simulate the execution on paper.2. Key in the program and run it!	Output: 0 1 8 27
int $c = 0;$		64 125 216
<pre>for (int i = 0; i < N; i++) { printf("%d\n", c); c += b; b += a; a += 6;</pre>		343 512 729
} }	a this program significant	
	iy is this program significant?	

What are the invariants?

<pre>int b = 1; int c = 0; for (int i = 0; i < N; i++) { // Assertion: a ==6(i6#1)+1) // Assertion: b ==3i(i*±1)±+1) // Assertion: c ==i³ i*i*i printf("%d\n", c); c += b; b += a; a += 6; } Since the assertion c = i³ holds on every loop, the algorithm is correct.</pre> Induction step: At the start of loop i, the assertions are: a = 6(i + 1) b = 3i(i + 1) + 1 c = i ³ After c += b; the value of c changes to c = i ³ + 3i(i + 1) + 1 = i ³ + 3i ² + 3i + 1 = (i + 1) ³ After b += a; the value of b changes to b = 3i(i + 1) + 1 + 6(i + 1) = (i + 1)(3i + 6) + 1 = 3(i + 1)(i + 2) + 1 After a += 6; the value of a changes to a = 6(i + 1) + 6 = 6(i + 2) which are the values for a, b, c on loop i + 1.	<pre>int main () { int N = 10; int a = 6;</pre>	Base case: When $i = 0$, the assertions are: • $a = 6(0+1) = 6$ • $b = 3 \cdot 0 \cdot (0+1) + 1 = 1$ • $c = (0)^3 = 0$ which are the 3 initial values for a, b, c.
for (int i = 0; i < N; i++) { // Assertion: $a = 6(i6 + 1) + 1$ // Assertion: $b = 3i(i + 1) + 1$ // Assertion: $c = \pm 3i + i + 1$ // Assertion: $c = \pm 3i + i + 1$ // Assertion: $c = \pm 3i + i + 1$ printf("%d\n", c); c += b; b += a; a += 6; } Since the assertion $c = i^3$ holds on every After $b + a = 6;$ b = 3i(i + 1) + 1 + 6(i + 1) = (i + 1)(3i + 6) + 1 = 3(i + 1)(i + 2) + 1 After $a + a = 6;$ the value of a changes to a = 6(i + 1) + 6 = 6(i + 1) + 6 = 6(i + 2)	int $b = 1;$	
1 Since the assertion $c = i^3$ holds on every 1 Since the assertion $c = i^3$ holds on $c = i^3$ holds		assertions are:
<pre>// Assertion: a ==6(i6#1)+1) // Assertion: b ==3i(3*±1)±+1) // Assertion: c ==±3 i*i*i printf("%d\n", c); c += b; b += a; a += 6; } Since the assertion c = i³ holds on every </pre> Since the assertion c = i ³ holds on every • c = i ³ After c += b; t = i ³ + 3i(i + 1) + 1 t = i ³ + 3i ² + 3i + 1 t = i ³ + 3i ² + 3i + 1 t = i ³ + 3i ² + 3i + 1 t = i ³ + 3i ² + 3i + 1 t = i ³ + 3i ² + 3i + 1 t = (i + 1) ³ After b += a; t = 3(i + 1) + 1 + 6(i + 1) t = (i + 1)(3i + 6) + 1 t = 3(i + 1)(i + 2) + 1 After a += 6; t = 3(i + 1) + 6 t = 6(i + 2)	for (int i = 0; i < N; i++) {	
<pre>// Assertion: c == i³ i*i*i printf("%d\n", c); c += b; b += a; a += 6; } Since the assertion c = i³ holds on every </pre> • $c = i^3 + 3i(i+1) + 1$ $= i^3 + 3i^2 + 3i + 1$ $= (i + 1)^3$ After b += a; the value of b changes to • b = 3i(i + 1) + 1 + 6(i + 1) $= (i + 1)(3i + 6) + 1$ $= 3(i + 1)(i + 2) + 1$ After a += 6; the value of a changes to • a = 6(i + 1) + 6 $= 6(i + 2)$	// Assertion: a == 6(i6 * 1)+1)	
Since the assertion $c = i^{3}$ holds on every $i = i^{3} + 3i^{2} + 3i + 1$ $= (i + 1)^{3}$ After $b + = a;$ the value of b changes to • $b = 3i(i + 1) + 1 + 6(i + 1)$ $= (i + 1)(3i + 6) + 1$ $= 3(i + 1)(i + 2) + 1$ After $a + = 6;$ the value of a changes to • $a = 6(i + 1) + 6$ $= 6(i + 2)$	// Assertion: b=3i(3*±1);+1) + 1	After $c += b$; the value of c changes to
printf("%d\n", c); $c \neq b;$ $b \neq a;$ $a \neq 6;$ } Since the assertion $c = i^3$ holds on every $c \neq b;$ $a \neq b;$ a = 6(i + 1) + 6(i + 1) a = 3(i + 1)(i + 2) + 1 After $a \neq b;$ a = 6(i + 1) + 6 a = 6(i + 1) + 6 a = 6(i + 2)	// Assertion: $c = \pm^3 i \pm i \pm i$	
After b += a; b += a; a += 6; } Since the assertion c = i^3 holds on every After b += a; the value of b changes to b = $3i(i + 1) + 1 + 6(i + 1)$ = $(i + 1)(3i + 6) + 1$ = $3(i + 1)(i + 2) + 1$ After a += 6; the value of a changes to • a = $6(i + 1) + 6$ = $6(i + 2)$	<pre>printf("%d\n", c);</pre>	
b += a; a += 6; i = 3i(i + 1) + 1 + 6(i + 1) = (i + 1)(3i + 6) + 1 = 3(i + 1)(i + 2) + 1 After $a += 6$; the value of a changes to a = 6(i + 1) + 6 = 6(i + 2)	4	· · · · · · · · · · · · · · · · · · ·
a += 6; } Since the assertion c = i^3 holds on every = (i + 1)(3i + 6) + 1 $= 3(i + 1)(i + 2) + 1$ After a += 6; the value of a changes to a = 6(i + 1) + 6 $= 6(i + 2)$		C
After $a += 6$; the value of a changes to • $a = 6(i + 1) + 6$ = 6(i + 2)		= (i + 1)(3i + 6) + 1
• $a = 6(i + 1) + 6$ Since the assertion $c = i^3$ holds on every = 6(i + 2)	a += 6;	
Since the assertion $c = i^3$ holds on every $= 6(i + 2)$	}	-
		= 6(1 + 2)

What are the invariants?

int main () {
 int N = 10;
 int a = 6;
 int b = 1;
 int c = 0;

loop, the algorithm is correct.

Base case: When i = 0, the assertions are:

- a = 6(0+1) = 6
- $b = 3 \cdot 0 \cdot (0+1) + 1 = 1$
- $c = (0)^3 = 0$

which are the 3 initial values for a, b, c.

Induction step: At the start of loop i, the assertions are:

```
• a = 6(i + 1)

• b = 3i(i + 1) + 1

• c = i^3

After c += b; the value of c changes to

• c = i^3 + 3i(i + 1) + 1

= i^3 + 3i^2 + 3i + 1

= (i + 1)^3

After b += a; the value of b changes to

• b = 3i(i + 1) + 1 + 6(i + 1)

= (i + 1)(3i + 6) + 1

= 3(i + 1)(i + 2) + 1

After a += 6; the value of a changes to

• a = 6(i + 1) + 6

= 6(i + 2)

which are the values for a, b, c on loop i + 1.
```

Example: Reversing a String S

reverse("stressed") returns "desserts" head("stressed") = "s" certainly for any nonempty S: tail("stressed") = "tressed" S = head(S) + tail(S) $X \leftarrow S: Y \leftarrow$ "" while X not empty do: $Y \leftarrow head(X) + Y$ $X \leftarrow tail(X)$

return Y

Adding Invariants & Checkpoints

What's a good invariant?

Proving the Invariant

Is it true at checkpoint 1?

X X

Execute checkpoint to checkpoint: If the invariant is true at the beginning of the loop, then is it true at the end of the loop.

Proving the Invariant

Suppose that S = reverse(Y) + X at the beginning of some loop. Then after running the next loop Y' = head(X) + Y and X' = last(X) So, just need to show that S = reverse(Y') + X'. reverse(Y') + X' = reverse(head(X) + Y) +last(X) = reverse(Y) + head(X) + last(X) =reverse(Y) + X = S.

One Last Detail

So, the invariant holds at the beginning of the first loops, and at the end of every successive loop. Including the last loop!

 When X = "", the loop terminates and S = reverse(Y) + X = reverse(Y). Thus Y = reverse(S).

But does the loop terminate?

• Another invariant: that |X| is natural and decreasing.