Binary Search

CMPT 125
Mo Chen

SFU Computing Science
27/1/2020



Lecture 12

Today
e Binary Search



What if the array was ordered?

Think of searching a dictionary for a word?

e Strategy: Not one word at a time In sequential order
starting from aardvark, etc.

e Strategy: Jump to where you estimate the word to be
based on what you know about the alphabet.

Refine your jumps + hone in on the correct page quickly.

This is the main idea behind binary search.



Divide and Conquer

Generic Strategy (Paradigm):

1. Divide: Cut the array into 2 or more
roughly equally sized pieces

2. Conquer: Use what you know about the
pieces to solve the original problem



Binary Search

Strategy: Divide and Conquer

1. Examine the middle element of the array of candidates.
This divides the array into two [roughly] equal halves.
2. Compare the middle element with the target.
o If middle < target then throw out the first half.
o But if middle > target then throw out second half.
3. Repeat 1-3 until middle == target (found!) or no
candidates remain (fail!).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E.g., target = 42: 8|-7|-5|-2]0 4 6 / 117|120 |28 |29 |42 | 49 | 64




Binary Search

Strategy: Divide and Conquer

1. Examine the middle element of the array of candidates.
This divides the array into two [roughly] equal halves.
2. Compare the middle element with the target.
o If middle < target then throw out the first half.
o But if middle > target then throw out second half.
3. Repeat 1-3 until middle == target (found!) or no
candidates remain (fail!).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E.g., target = 42: 8|-7|-5|-2| 0| 4 6 7 |17 | 20 [ 28 | 29 | 42 | 49 | 64




Binary Search

Strategy: Divide and Conquer

1. Examine the middle element of the array of candidates.
This divides the array into two [roughly] equal halves.
2. Compare the middle element with the target.
o If middle < target then throw out the first half.
o But if middle > target then throw out second half.
3. Repeat 1-3 until middle == target (found!) or no
candidates remain (fail!).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E.g., target = 42: 8|-7|-5|-2|0]|4 6 7 | 17|20 |28 |29 |42 49 | 64




Binary Search

Strategy: Divide and Conquer

1. Examine the middle element of the array of candidates.
This divides the array into two [roughly] equal halves.
2. Compare the middle element with the target.
o If middle < target then throw out the first half.
o But if middle > target then throw out second half.
3. Repeat 1-3 until middle == target (found!) or no
candidates remain (fail!).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E.g., target = 42: 8|-7|-5|-2|0]|4 6 7 | 17|20 |28 | 29|42 )49 | 64

return true
or index=12



Binary Search

Requirements (Pre-Conditions):

e Candidate array must be sorted

How to keep track of the list of candidates?

e Useintegers first and last for remaining
candidates arr[first..last]

e Initially, first=0; last=len-1

e Middle elementis atindex (first+last)/2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E.g., target = 42: 8|-7|5|-2|0]| 4 6 ( |17 | 20| 28|29 |42 | 49 | 64

first=0
last = 14
mid = 7



Binary Search

Requirements (Pre-Conditions):

e Candidate array must be sorted

How to keep track of the list of candidates?

e Useintegers first and last for remaining
candidates arr[first..last]

e Initially, first=0; last=len-1

e Middle elementis atindex (first+last)/2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E.g., target= 42: 8|-7|5|-2|0| 4|6 |7 |17]20]|28]|29] 42|49 |64

first=0 8
last = 14 e 14
mid = 7 11



Binary Search

Requirements (Pre-Conditions):

e Candidate array must be sorted

How to keep track of the list of candidates?

e Useintegers first and last for remaining
candidates arr[first..last]

e Initially, first=0; last=len-1

e Middle elementis atindex (first+last)/2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E.g., target = 42: 8|-7|5|-2|0| 4|6 |7 |17|20|28 |29 |42 |49 | 64

first=0 8 12
last = 14 e—) 14 Y 14
mid = 7 11 13



Binary Search

Requirements (Pre-Conditions):
e Candidate array must be sorted

How to keep track of the list of candidates?

e Useintegers first and last for remaining

candidates arr[first..last]
e Initially, first=0; last=len-1
e Middle elementis atindex (first+last) /2

2 3 4 5 6 7 8 9 10 11 12 13 14

0 1

first=0 8 12 12

last= 14 e 14 oy 14 ) 12 return true
mid = 7 11 13 12 or index=12



Binary Search Code

int BinarySearch(int arr[], int len, 1nt target) {

Search candidate array arr[first..last]
while not empty

e Compare with the middle element
e Algorithm:

o found if equal to target, So return position
o throw out second half if greater than target OR
o throw out first half if less than target

No candidates, so return fall




Binary Search Code

int BinarySearch(int arr[], int len, 1nt target) {
int first = 0;
int last = len-1;

while (first <= last) {

// Q. What’s a good assertion this time?
int mid = (first+last) / 2;
if (target == arr[mid]) return mid;

1if (target < arr[mid]) last = mid-1;

else first = mid+1; first mid last

}

return -1;

first last first last




Binary Search - Loop Free Version

int BinarySearch(int arr[], int len, 1nt target) {

e Search candidate array arr[0..len-1]
e Algorithm:

o return fail if empty

e Compare with the middle element + re-search
e Algorithm:

o foundif equal to target, so return true
o throw out second half if greater than target OR
o throw out first half if less than target




Binary Search - Loop Free Version

int BinarySearch(int arr[], int len, 1nt target) {
if (len <= 0) {

return 0;

e Compare with the middle element + re-search
e Algorithm:

o foundif equal to target, so return true
o throw out second half if greater than target OR
o throw out first half if less than target




Binary Search - Loop Free Version

int BinarySearch(int arr[], int len, 1nt target) {
if (len <= 0) {
return 0;
}
int mid = len/2;
1f (target == arr[mid]) return 1;
1f (target < arr[mid]) return BinarySearch (arr,mid, target);

else return BinarySearch (arr+mid+1l, len-mid-1, target);

mid

}

If we go from index @ to len-1, there are len items

If we go from index a to b, there are b-a+1 items

If we go from index mid+1 to 1len-1, there are
(len-1) - (mid+1) + 1items




Analysis of Binary Search

What's the worst case on an array of length N?

e After one iteration, the possible candidates are
[roughly] cut in half.

After k iterations, how many candidates remain?
e Roughly N/ 2k

When do you run out of candidates?

e when 2k>N
e i.e., after k >1log,N iterations

Thus binary search runs in O(logN).



Linear Search vs Binary Search

Linear Search  Binary Search

] N (3 + 4N) (4 + 12 log,(N+1))

Even though the inner 1 7 5
loop of binary search is . . s
more complex than 7 31 40
linear search, we o %3 52

100 403 88
eXpeCt O(lOg]\f) to 1000 4003 124
outperform O(N) as N 106 4000003 »

gets large. 10° 4x10° 364



Linear Search vs Binary Search

e Binary search has a fast running time.

e Disadvantages?

o Harder to code
o Requires the array be sorted

e Keeping the array sorted can be expensive!
o Significantly more searching than update? Keep list
sorted (slow) and use (fast) binary search
o Significantly more update than search? Keep array
unsorted (fast) and use (slow) linear search



