
Binary Search
CMPT 125

Mo Chen

SFU Computing Science

27/1/2020

Lecture 12

Today

● Binary Search

What if the array was ordered?

Think of searching a dictionary for a word?

● Strategy: Not one word at a time in sequential order

starting from aardvark, etc.

● Strategy: Jump to where you estimate the word to be

based on what you know about the alphabet.

Refine your jumps + hone in on the correct page quickly.

This is the main idea behind binary search.

Divide and Conquer

Generic Strategy (Paradigm):

1. Divide: Cut the array into 2 or more

roughly equally sized pieces

2. Conquer: Use what you know about the

pieces to solve the original problem

Binary Search

Strategy: Divide and Conquer

1. Examine the middle element of the array of candidates.

This divides the array into two [roughly] equal halves.

2. Compare the middle element with the target.

○ If middle < target then throw out the first half.

○ But if middle > target then throw out second half.

3. Repeat 1-3 until middle == target (found!) or no

candidates remain (fail!).

17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8E.g., target = 42: -7 -5 -2 0 4 6 7-8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Binary Search

Strategy: Divide and Conquer

1. Examine the middle element of the array of candidates.

This divides the array into two [roughly] equal halves.

2. Compare the middle element with the target.

○ If middle < target then throw out the first half.

○ But if middle > target then throw out second half.

3. Repeat 1-3 until middle == target (found!) or no

candidates remain (fail!).

17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8E.g., target = 42: 17 20 28 29-7 -5 -2 0 4 6 7-8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Binary Search

Strategy: Divide and Conquer

1. Examine the middle element of the array of candidates.

This divides the array into two [roughly] equal halves.

2. Compare the middle element with the target.

○ If middle < target then throw out the first half.

○ But if middle > target then throw out second half.

3. Repeat 1-3 until middle == target (found!) or no

candidates remain (fail!).

17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8E.g., target = 42: 17 20 28 29 49 64-7 -5 -2 0 4 6 7-8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Binary Search

Strategy: Divide and Conquer

1. Examine the middle element of the array of candidates.

This divides the array into two [roughly] equal halves.

2. Compare the middle element with the target.

○ If middle < target then throw out the first half.

○ But if middle > target then throw out second half.

3. Repeat 1-3 until middle == target (found!) or no

candidates remain (fail!).

17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8E.g., target = 42: 17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8

return true

or index=12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Binary Search

17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8E.g., target = 42: -7 -5 -2 0 4 6 7-8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

first =

last =

mid =

0

14

7

Requirements (Pre-Conditions):

● Candidate array must be sorted

How to keep track of the list of candidates?

● Use integers first and last for remaining

candidates arr[first..last]

● Initially, first=0; last=len-1

● Middle element is at index (first+last)/2

Binary Search

17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8E.g., target = 42: 17 20 28 29-7 -5 -2 0 4 6 7-8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

first =

last =

mid =

0

14

7

8

14

11

Requirements (Pre-Conditions):

● Candidate array must be sorted

How to keep track of the list of candidates?

● Use integers first and last for remaining

candidates arr[first..last]

● Initially, first=0; last=len-1

● Middle element is at index (first+last)/2

Binary Search

17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8E.g., target = 42: 17 20 28 29 49 64-7 -5 -2 0 4 6 7-8

first =

last =

mid =

0

14

7

8

14

11

12

14

13

Requirements (Pre-Conditions):

● Candidate array must be sorted

How to keep track of the list of candidates?

● Use integers first and last for remaining

candidates arr[first..last]

● Initially, first=0; last=len-1

● Middle element is at index (first+last)/2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Binary Search

17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8E.g., target = 42: 17 20 28 29 42 49 64-7 -5 -2 0 4 6 7-8

return true

or index=12

first =

last =

mid =

0

14

7

8

14

11

12

14

13

12

12

12

Requirements (Pre-Conditions):

● Candidate array must be sorted

How to keep track of the list of candidates?

● Use integers first and last for remaining

candidates arr[first..last]

● Initially, first=0; last=len-1

● Middle element is at index (first+last)/2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

return -1;

while() {

}

first <= last

int first = 0;

int last = len-1;

Binary Search Code

int BinarySearch(int arr[], int len, int target) {

}

● Compare with the middle element

● Algorithm:
○ found if equal to target, so return position

○ throw out second half if greater than target OR

○ throw out first half if less than target

● Search candidate array arr[first..last]

while not empty

● No candidates, so return fail

if (target < arr[mid])

while() {

}

first <= last

first = mid+1;else

int first = 0;

int last = len-1;

if (target == arr[mid]) return mid;

int mid = (first+last) / 2;

last = mid-1;

return -1;

Binary Search Code

int BinarySearch(int arr[], int len, int target) {

}

midfirst last

first lastfirst last

// Q. What’s a good assertion this time?

Binary Search - Loop Free Version

int BinarySearch(int arr[], int len, int target) {

}

● Compare with the middle element + re-search

● Algorithm:
○ found if equal to target, so return true

○ throw out second half if greater than target OR

○ throw out first half if less than target

● Search candidate array arr[0..len-1]

● Algorithm:
○ return fail if empty

Binary Search - Loop Free Version

if (len <= 0) {

return 0;

}

int BinarySearch(int arr[], int len, int target) {

}

● Compare with the middle element + re-search

● Algorithm:
○ found if equal to target, so return true

○ throw out second half if greater than target OR

○ throw out first half if less than target

return 1;

Binary Search - Loop Free Version

mid

if (len <= 0) {

return 0;

}

if (target < arr[mid])

else

if (target == arr[mid])

return BinarySearch(arr,mid,target);

int BinarySearch(int arr[], int len, int target) {

}

return BinarySearch(arr+mid+1,len-mid-1,target);

int mid = len/2;

If we go from index 0 to len-1, there are len items

If we go from index a to b, there are b-a+1 items

If we go from index mid+1 to len-1, there are

(len-1) - (mid+1) + 1 items

Analysis of Binary Search

What’s the worst case on an array of length N?

● After one iteration, the possible candidates are

[roughly] cut in half.

After k iterations, how many candidates remain?
● Roughly N / 2k

When do you run out of candidates?

● when 2k ≥ N
● i.e., after k ≥ log2N iterations

Thus binary search runs in O(logN).

Linear Search vs Binary Search

Even though the inner

loop of binary search is

more complex than

linear search, we

expect O(logN) to

outperform O(N) as N
gets large.

Binary SearchLinear Search

(4 + 12 log2(N+1))(3 + 4N)N

1671

28153

40317

526315

88403100

12440031000

2444000003106

3644 x 109109

Linear Search vs Binary Search

● Binary search has a fast running time.

● Disadvantages?
○ Harder to code

○ Requires the array be sorted

● Keeping the array sorted can be expensive!
○ Significantly more searching than update? Keep list

sorted (slow) and use (fast) binary search

○ Significantly more update than search? Keep array

unsorted (fast) and use (slow) linear search

