
Recursion and Searching
CMPT 125

Mo Chen

SFU Computing Science

27/1/2020

Outline

● Recursion examples

● Linear search

● Binary search

Recursion Example 1

int sum(int arr[], int len) {

int total = 0;

for (int i = 0; i < len; i++) {

total += arr[i];

}

return total;

}

Recursion Example 1

● Now, do it using recursion

● Steps:
○ 1) Base case: when array has length 1, just return

the only element

○ 2) Assume your function can sum an array that has

length len-1, and call the function inside itself

● New interpretation of “len”: number of

elements you want to sum

Recursion Example 1

int sum(int arr[], int len) {

// returns sum of first len elements of arr

// base case

if (len == 1) {

return arr[0];

}

// recursion

return arr[len-1] + sum(arr, len-1);

}

Recursion Example 1

int sum(int arr[], int len) {

// returns sum of first len elements of arr

// base case

if (len == 1) {

return arr[0];

}

// recursion

return arr[len-1] + sum(arr, len-1);

}

arr[0...len-2]

0 1 2 len-2 len-1...

arr[len-1]

Returns sum of first

len-1 elements of array

The first len-1

elements of array

Recursion Example 2: Tower of Hanoi

● https://en.wikipedia.org/wiki/Tower_of_Hanoi

● Move tower to the right slot

● Move disks one by one

● Bigger disks must always be below

smaller disks

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Recursion Example 2: Tower of Hanoi

● Move tower to the right slot

● Move disks one by one

● Bigger disks must always be below

smaller disks

Source: YouTube

Recursion Example 2: Tower of Hanoi

● Recursive solution:
a. Base case: If N is 1, then move the disk from A to C

b. Otherwise:

■ Move (smallest) N-1 disks from A to B

■ Move (largest) 1 disk from A to C

Recursion Example 2: Tower of Hanoi

● Recursive solution:
a. Base case: If N is 1, then move the disk from A to C

b. Otherwise:

■ Move (smallest) N-1 disks from A to B

■ Move (largest) 1 disk from A to C

■ Move (smallest) N-1 disks from B to C

● Organization:

a. At any time, A, B, and C may be labeled as “source”,

“spare”, and “destination”

Recursion Example 2: Tower of Hanoi

● Recursive solution: solve_ToH(N, src, des)
a. Base case: If N is 1, then move the disk from A to C

■ move(A,C);
b. Otherwise:

■ Move (smallest) N-1 disks from A to B
● solve_ToH(N-1, A, B);

■ Move (largest) 1 disk from A to C
● move(A,C);

■ Move (smallest) N-1 disks from B to C
● solve_ToH(N-1, B, C);

● Organization:

a. At any time, A, B, and C may be labeled as “source”,

“spare”, and “destination”

Searching Overview

● It is often useful to find out whether or not an

array contains a particular item
○ E.g., “Is Alice among your Facebook friends?”

○ E.g., “Find Bob’s phone number.”

● Two possible specifications:
○ A search can either return true or false

○ OR . . . the position of the item in the array (-1 for fail)

Searching Variations

● There are many possible search algorithms
○ generally, want the one that finds the item the fastest

● Searching is one of those activities that can be

done much more efficiently if the set is sorted

ahead of time
○ Q. How does sorting make your searches easier?

● Best for unordered array is a linear search

Linear Search Algorithm

Strategy: Start with the first item and step through the

array one element at a time, comparing each item with the

target until either a match is found (return true / index) or all

elements have been exhausted (return false / -1).

Neptune Uranus Saturn

Q. What input results in the worst-case running time?

Jupiter Mars Earth Venus MercuryNeptune Uranus SaturnE.g., target = "Saturn":

Neptune Uranus Saturn Jupiter Mars Earth Venus MercuryNeptune Uranus Saturn Jupiter Mars Earth Venus MercuryE.g., target = "Pluto":

return true

or index=2

Neptune Uranus Saturn Jupiter Mars Earth Venus MercuryNeptune Uranus Saturn Jupiter Mars Earth Venus MercuryE.g., target = "Mercury":

if (arr[i] == target) {

return i;

}

for (int i = 0; i < len; i++) {

}

Linear Search in C

● Repeat for all i from 0 to len-1

return -1;

● Check the next element, arr[i]

● Algorithm:
○ found if equal to target, so return position

● Not found, so return fail

int LinearSearch(int arr[], int len, int target) {

}

for (int i = 0; i < len; i++) {

}

int LinearSearch(int arr[], int len, int target) {

}

if (arr[i] == target) {

return i;

}

// What’s a good assertion?

Linear Search in C

return -1;

Linear Search Analysis

Worst case for linear search is linear time O(N)
● Intuition: You have to check all elements

to confidently return false.

Best case?

● You find the element at index 0

Q. What do you think is the average case?

int LinearSearch(int arr[], int len, int target) {

for (int i = 0; i < len; i++) {

if (arr[i] == target) {

return i;

}

}

return -1;

}

Counting Comparisons

● Comparisons are relatively expensive

elementary operations

N

N + 1
Total Comparisons
= 2N + 1

● Use a sentinel to cut the comparisons in half
○ It’s still O(N), but with half the leading constant

if (i != len) return i;

return -1;

}

int i = 0;

while (arr[i] != target) {

i++;

}

arr[len] = target;

Optimized Linear Search

● Sentinel allows you to combine the element

comparison and loop termination conditions

Sentinel value

Signals the end of the

search

And yes, assignment to
arr[len] is a side-

effect that can have bad

consequences

1

N + 1
Total Comparisons
= N + 2

int LinearSearch(int arr[], int len, int target) {

But is it really an improvement?

Big-O methods say that leading constants don’t

matter when comparing two algorithms

● they usually don’t if the two algorithms

have different Big-O running times

● E.g., 50000N + 300 vs 2N2 - 3N + 1

But they do matter when their Big-O growth

rates are the same

● E.g., optimized program vs unoptimized

● E.g., fast machine vs slow machine

